【題目】如圖,點P為x軸正半軸上的一個點,過點P作x軸的垂線,交函數(shù)的圖象于點A,交函數(shù)的圖象于點B,過點B作x軸的平行線,交于點C,邊接AC.
(1)當(dāng)點P的坐標(biāo)為(1,0)時,求△ABC的面積;
(2)當(dāng)點P的坐標(biāo)為(1,0)時,在y軸上是否存在一點Q,使A、O、Q三點為頂點的三角形△QAO為等腰三角形?若存在,請直接寫出Q點的坐標(biāo);若不存在,說明理由.
(3)請你連接OA和OC.當(dāng)點P的坐標(biāo)為(t,0)時,△OAC的面積是否隨t的值的變化而變化?請說明理由.
【答案】(1);(2)則Q的坐標(biāo)為(0,﹣),(0,),(0,2)或(0,1);
(3)見解析.
【解析】
(1)根據(jù)P點坐標(biāo)先求出A,B兩點坐標(biāo),然后求出C點坐標(biāo),得到AB=3,BC=,再利用三角形面積公式求解即可;
(2)如圖①,先求得OA=,再分OA=OQ,AQ=AO,QO=QA三種情況,分別求出Q點坐標(biāo)即可;
(3)如圖②過點C作CE⊥x軸于點E,CD⊥y軸于點D,因為點P的坐標(biāo)為(t,0),所以點A的坐標(biāo)為(t,),點B(t,),點C(,),由圖②可知S△OAC=S矩形CDOE+S梯形APEC﹣S△OCD﹣S△OAP,進而可得到關(guān)于t的方程,然后解方程即可.
解:(1)當(dāng)點P的坐標(biāo)為(1,0)時,點A、B的橫坐標(biāo)為1,
∵點A在反比例函數(shù)y=上,點B在反比例函數(shù)y=上,
∴點A(1,1),點B(1,4),
∵BC∥x軸,
∴點C的縱坐標(biāo)為4,
又∵點C在y=上,
∴點C的坐標(biāo)為(,4),
∴AB=3,BC=,
∴S△ABC=×BC×AB=;
(2)如圖①所示:OA==,
①若OA=OQ,點Q位于Q1或Q2位置,此時Q1(0,﹣),Q2(0,);
②若AQ=AO,點Q位于Q3位置,此時Q3(0,2);
③若QO=QA,點Q位于Q4位置,此時Q4(0,1);
則Q的坐標(biāo)為(0,﹣),(0,),(0,2)或(0,1);
(3)過點C作CE⊥x軸于點E,CD⊥y軸于點D,如圖②所示:
∵點P的坐標(biāo)為(t,0),
∴點A的坐標(biāo)為(t,),點B(t,),點C(,),
∴S△OAC=S矩形CDOE+S梯形APEC﹣S△OCD﹣S△OAP=1+(+)×(t﹣)﹣﹣=;
故△OAC的面積不隨t的值的變化而變化.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P在⊙O的直徑AB的延長線上,PC為⊙O的切線,點C為切點,連接AC,過點A作PC的垂線,點D為垂足,AD交⊙O于點E.
(1)如圖1,求證:∠DAC=∠PAC;
(2)如圖2,點F(與點C位于直徑AB兩側(cè))在⊙O上,,連接EF,過點F作AD的平行線交PC于點G,求證:FG=DE+DG;
(3)在(2)的條件下,如圖3,若AE=DG,PO=5,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B、M兩點的⊙O交BC于點G,交AB于點F,F(xiàn)B恰為⊙O的直徑.
(1)判斷AE與⊙O的位置關(guān)系,并說明理由;
(2)若BC=6,AC=4CE時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過A(8,0)、B(0,8)兩點的直線y1與直線y2=x+2交于點C.直線y2與x軸、y軸分別交于點D和點E.
(1)動點M從A點出發(fā)沿AB運動,運動的速度是每秒1個單位長度:當(dāng)點M運動到B點時停止運動,設(shè)M運動時間為t秒,△ADM的面積為S,求S與t的函數(shù)關(guān)系式.
(2)在y軸上是否存在點P,使△ACP為等腰三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A的坐標(biāo)是(0,6),點B的坐標(biāo)是(6,0).
(1)如圖1,點C的坐標(biāo)是(﹣2,0),BD⊥AC于D交y軸于點E.求點E的坐標(biāo);
(2)在(1)的條件下求證:OD平分∠CDB;
(3)如圖2,點F為AB中點,點G為x正半軸點B右側(cè)一動點,過點F作FG的垂線FH,交y軸的負半軸于點H,那么當(dāng)點G的位置不斷變化時,S△AFH﹣S△FBG的值是否發(fā)生變化?若變化,請說明理由;若不變化,請求出相應(yīng)結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關(guān)系.
(1)L1表示哪輛汽車到甲地的距離與行駛時間的關(guān)系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關(guān)系式.
(4)2小時后,兩車相距多少千米?
(5)行駛多長時間后,A、B兩車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位籃球運動員在距離籃圈中心水平距離4m處起跳投籃,球沿一條拋物線運動,當(dāng)球運動的水平距離為2.5m時,達到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心距離地面高度為3.05m,在如圖所示的平面直角坐標(biāo)系中,下列說法正確的是( 。
A. 此拋物線的解析式是y=﹣x2+3.5
B. 籃圈中心的坐標(biāo)是(4,3.05)
C. 此拋物線的頂點坐標(biāo)是(3.5,0)
D. 籃球出手時離地面的高度是2m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:Rt△ABC中,∠C=90°,∠ABC=30°.
(1)探究應(yīng)用1:如圖1,Rt△ABC中,∠C=90°,∠ABC=30°,點D在線段CB上,以AD為邊作等邊△ADE,連接BE,為探究線段BE與DE之間的數(shù)量關(guān)系,組長已經(jīng)添加了輔助線:取AB的中點F,連接EF.線段BE與DE之間的數(shù)量關(guān)系是_________,并說明理由;
(2)探究應(yīng)用2:如圖2,Rt△ABC中,∠C=90°,∠ABC=30°,點D在線段CB的延長線上,以AD為邊作等邊△ADE,連接BE.線段BE與DE之間的數(shù)量關(guān)系是__________,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB=AC,∠BCA=65°,作CD∥AB,并與○O相交于點D,連接BD,則∠DBC的大小為
A. 15° B. 35° C. 25° D. 45°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com