【題目】某學習小組做用頻率估計概率的試驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如圖所示折線統(tǒng)計圖,則符合這一結果的試驗最有可能的是( )

A. 擲一枚正六面體的骰子,出現(xiàn)1點朝上

B. 任意寫一個整數(shù),它能被2整除

C. 不透明袋中裝有大小和質(zhì)地都相同的1個紅球和2個黃球,從中隨機取一個,取到紅球

D. 先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面

【答案】C

【解析】

根據(jù)統(tǒng)計圖可知,實驗結果在0.33附近波動,及其概率,計算四個選項的概率,約為0.33的即為正確答案.

解:A、擲一個質(zhì)地均勻的正六面體骰子,出現(xiàn)1點朝上的概率為≈0.17,不符合題意;

B、任意寫一個整數(shù),它能2被整除的概率為,不符合題意;

C、不透明袋中裝有大小和質(zhì)地都相同的1個紅球和2個黃球,從中隨機取一個,取到紅球的概率≈0.33,符合題意;

D、先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面的概率是,不符合題意;

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,PDC延長線上一點,AP分別交BDBC于點M,N

(1)圖中相似三角形共有_____對;

(2)證明:AM2MNMP

(3)AD6,DCCP21,求BN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5)。

(1)求直線BC與拋物線的解析式;

(2)若點M是拋物線在x軸下方圖象上的動點,過點M作MNy軸交直線BC于點N,求MN的最大值;

(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設平行四邊形CBPQ的面積為S1,ABN的面積為S2,且S1=6S2,求點P的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCO的對角線BOx 軸上,若正方形ABCO的邊長為,點Bx負半軸上,反比例函數(shù)的圖象經(jīng)過C點.

1)求該反比例函數(shù)的解析式;

2)當函數(shù)值-2時,請直接寫出自變量x的取值范圍;

3)若點P是反比例函數(shù)上的一點,且PBO的面積恰好等于正方形ABCO的面積,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,以點B為圓心,BC長為半徑畫弧,交邊AB與點D,以A為圓心,AD長為半徑畫弧,交邊AC于點E,連接CD

1)若∠A=28°,求∠ACD的度數(shù);

2)設BC=a,AC=b

①線段AD的長是方程的一個根嗎?為什么?

②若AD=EC,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,海中有一小島A,它周圍8海里內(nèi)有暗礁,漁船由西向東航行,在B點測得小島A在北偏東60°方向上,航行12海里到達D點,這時測得小島A在北偏東30°方向上.

(1)求∠BAD的度數(shù);

(2)如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁的危險?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了手機伴我健康行主題活動,他們隨機抽取部分學生進行使用手機目的每周使用手機的時間的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知查資料的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:

(1)在扇形統(tǒng)計圖中,玩游戲對應的百分比為______,圓心角度數(shù)是______度;

(2)補全條形統(tǒng)計圖;

(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Ax1y1)、Bx2y2)都在某函數(shù)圖象上,且當x1x2<0時,y1y2,則此函數(shù)一定不是(  )

A. B. y=﹣2x+1 C. yx2﹣1 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△BCP在正方形ABCD內(nèi),則∠APD_____度.

查看答案和解析>>

同步練習冊答案