已知拋物線的頂點坐標(biāo)為(-1.-2),并且與y軸交于點(0,-3),求這條拋物線的解析式.

解:由題意,拋物線的頂點坐標(biāo)為(-1,-2)
設(shè)拋物線的解析式為y=a(x+1)2-2(a≠0),
把(0,-3)代入上式得:a-2=-3,
解得,a=-1.
所以,這條拋物線的解析式為:y=-(x+1)2-2.
分析:由于已知拋物線的頂點坐標(biāo),則設(shè)拋物線的頂點式為y=a(x+1)2-2(a≠0),再把(0,-3)代入可計算出a的值,然后把拋物線的解析式化為一般式即可.
點評:本題考查了待定系數(shù)法法求二次函數(shù)解析式:先設(shè)二次函數(shù)的解析式(一般式、頂點式或交點式),然后把二次函數(shù)上的點的坐標(biāo)代入得到方程組,再解方程組,從而確定二次函數(shù)的解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、已知拋物線的頂點坐標(biāo)為M(1,-2),且經(jīng)過點N(2,3),求此二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,已知拋物線的頂點坐標(biāo)是M(1,2),并且經(jīng)過點C精英家教網(wǎng)(0,3),拋物線與直線x=2交于點P,
(1)求拋物線的函數(shù)解析式;
(2)在直線上取點A(2,5),求△PAM的面積;
(3)拋物線上是否存在點Q,使△QAM的面積與△PAM的面積相等?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線的頂點坐標(biāo)為M(1,4),且經(jīng)過點N(2,3),與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標(biāo);
(2)若直線y=kx+t經(jīng)過C、M兩點,且與x軸交于點D,探索并判斷四邊形CDAN是怎樣的四邊形?并對你得到的結(jié)論予以證明;
(3)直線y=mx+2與拋物線交于T,Q兩點.是否存在這樣的實數(shù)m,使以線段TQ為直徑的圓恰好過坐標(biāo)原點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北塘區(qū)一模)已知拋物線的頂點坐標(biāo)為(
5
2
,-
27
16
)
,且經(jīng)過點C(1,0),若此拋物線與x軸的另一交點為點B,與y軸的交點為點A,設(shè)P、Q分別為AB、OB邊上的動點,它們同時分別從點A、O向B點勻速運動,速度均為每秒1個單位,設(shè)P、Q移動時間為t(0≤t≤4)
(1)求此拋物線的解析式并求出P點的坐標(biāo)(用t表示);
(2)當(dāng)△OPQ面積最大時求△OBP的面積;
(3)當(dāng)t為何值時,△OPQ為直角三角形?
(4)△OPQ是否可能為等邊三角形?若可能請求出t的值;若不可能請說明理由,并改變點Q的運動速度,使△OPQ為等邊三角形,求出此時Q點運動的速度和此時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點坐標(biāo)為P(2,-1),它的圖象經(jīng)過點C(0,3).
(1)求該拋物線的解析式.
(2)設(shè)該拋物線的圖象與x軸交于A、B兩點,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案