【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點A(-4,-1)B(a,2)

1)求反比例函數(shù)的解析式和點B的坐標(biāo).

2)根據(jù)圖象回答,當(dāng)x在什么范圍內(nèi)時,一次函數(shù)的值大于反比例函數(shù)的值?

【答案】1y=,B(2,2);(2)當(dāng)x2-4x0時,一次函數(shù)的值大于反比例函數(shù)的值

【解析】

1)根據(jù)反比例函數(shù)圖象經(jīng)過點A-4,-1),可以求得反比例函數(shù)的解析式,再根據(jù)點B在反比例函數(shù)圖象上,即可求得點B的坐標(biāo);

2)根據(jù)函數(shù)圖象可以直接寫出當(dāng)x在什么范圍內(nèi)時,一次函數(shù)的值大于反比例函數(shù)的值.

解:(1)設(shè)反比例函數(shù)的解析式為y=,

反比例函數(shù)圖象經(jīng)過點A-4,-1),

∴-1=,解得k=4,

反比例函數(shù)的解析式為y=,

∵Ba,2)在y=的圖象上,

∴2=,解得a=2,

B的坐標(biāo)為B2,2);

2)由圖象得,交點A-4-1),B2,2),

當(dāng)x2-4x0時,y軸方向上直線在曲線的上方即一次函數(shù)的值大于反比例函數(shù)的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】使用家用燃?xì)庠顭_同一壺水所需的燃?xì)饬?/span>(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃?xì)庠顭_同一壺水的旋鈕角度與燃?xì)饬?/span>的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃?xì)庠顭_一壺水最節(jié)省燃?xì)獾男o角度約為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是不倒翁的正視圖,不倒翁的圓形臉恰好與帽子邊沿PAPB分別相切于點A、B,不倒翁的鼻尖正好是圓心O

1)若∠OAB=25°,求∠APB的度數(shù);

2)若∠OAB=n°,請直接寫出∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,,E為邊BC上一點,且EC=AD,連接AC.

1)求證:四邊形AECD是矩形;
2)若AC平分∠DABAB=5,EC=2,求AE的長,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,分別是的平分線,若添加以下一個條件,仍無法判斷四邊形為菱形,則這個條件是(

A.B.

C.D.的平分線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,邊的中點,于點,連接.下列結(jié)論不正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某中學(xué)利用陽光大課間,組織學(xué)生積極參加豐富多彩的課外活動,學(xué)校成立了舞蹈隊、足球隊、籃球隊、毽子隊、射擊隊等,其中射擊隊在某次訓(xùn)練中,甲、乙兩名隊員各射擊10發(fā)子彈,成績用下面的折線統(tǒng)計圖表示:(甲為實線,乙為虛線)

(1)依據(jù)折線統(tǒng)計圖,得到下面的表格:

射擊次序(次)

1

2

3

4

5

6

7

8

9

10

甲的成績(環(huán))

8

9

7

9

8

6

7

10

8

乙的成績(環(huán))

6

7

9

7

9

10

8

7

10

其中________,________;

(2)甲成績的眾數(shù)是________環(huán),乙成績的中位數(shù)是________環(huán);

(3)請運用方差的知識,判斷甲、乙兩人誰的成績更為穩(wěn)定?

(4)該校射擊隊要參加市組織的射擊比賽,已預(yù)選出2名男同學(xué)和2名女同學(xué),現(xiàn)要從這4名同學(xué)中任意選取2名同學(xué)參加比賽,請用列表或畫樹狀圖法,求出恰好選到11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,BCOA,BC=3,OA=6,AB=3

(1)直接寫出點B的坐標(biāo)

(2)已知D.E分別為線段OC.OB上的點,OD=5,OE=2BE,直線DEx軸于點F,求直線DE的解析式

(3)在(2)的條件下,點M是直線DE上的一點,在x軸上方是否存在另一個點N,使以O.D.M.N為頂點的四邊形是菱形?若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是O的直徑,過O點作OPAB,交弦AC于點D,交O于點E,且使PCA=ABC.

(1)求證:PC是O的切線;

(2)若P=60°,PC=2,求PE的長.

查看答案和解析>>

同步練習(xí)冊答案