【題目】如圖,數(shù)學興趣小組的小穎想測量教學樓前的一棵樹的樹高,下午課外活動時她測得一根長為1m的竹竿的影長是0.8m,但當她馬上測量樹高時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上(如圖),他先測得留在墻壁上的影高為1.2m,又測得地面的影長為2.6m,請你幫她算一下,樹高是( 。

A.4.25mB.4.45mC.4.60mD.4.75m

【答案】B

【解析】

此題首先要知道在同一時刻任何物體的高與其影子的比值是相同的,所以竹竿的高與其影子的比值和樹高與其影子的比值相同,利用這個結論可以求出樹高.

如圖,設BDBC在地面的影子,樹高為x
根據(jù)竹竿的高與其影子的比值和樹高與其影子的比值相同得

CB=1.2,
BD=0.96,
∴樹在地面的實際影子長是0.96+2.6=3.56,
再竹竿的高與其影子的比值和樹高與其影子的比值相同得,
x=4.45,
∴樹高是4.45m


故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將二次函數(shù)的圖象向右平移1個單位,再向下平移2個單位,得到如圖所示的拋物線,該拋物線與軸交于點、(在點的左側),,經過點的一次函數(shù)的圖象與軸正半軸交于點,且與拋物線的另一個交點為,的面積為5

(1)求拋物線和一次函數(shù)的解析式;

(2)拋物線上的動點在一次函數(shù)的圖象下方,求面積的最大值,并求出此時點E的坐標;

(3)若點軸上任意一點,在(2)的結論下,求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是邊長為2的等邊三角形,點D與點B分別位于直線AC的兩側,且AD=AC, 聯(lián)結BDCD,BD交直線AC于點E.

1)當∠CAD=90°時,求線段AE的長.

2)過點AAHCD,垂足為點H,直線AHBD于點F,

①當∠CAD<120°時,設(其中表示△BCE的面積,表示△AEF的面積),求y關于x的函數(shù)關系式,并寫出x的取值范圍;

②當時,請直接寫出線段AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校初中英語口語聽力考試即將舉行,準備了A、B、C、D四份聽力材料,它們的難易程度分別是易、中、難、難;另有a、b是兩份口語材料,它們的難易程度分別是易、難.

1)從四份聽力材料中,任選一份是難的聽力材料的概率是   ;

2)用樹狀圖形或列表法,求出聽力、口語兩份材料都是難的一套模擬試卷的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】6張看上去無差別的卡片,上面分別寫著1、23、4、56

1)一次性隨機抽取2張卡片,用列表或畫樹狀圖的方法求出兩張卡片上的數(shù)都是偶數(shù)的概率

2)隨機摸取1張后,放回并混在一起,再隨機抽取1張,直接寫出第二次取出的數(shù)字小于第一次取出的數(shù)字的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=ax+ba,b為常數(shù),a≠0)的圖象與x軸,y軸分別交于點A,B,且與反比例函數(shù)k為常數(shù),k≠0)的圖象在第二象限內交于點C,作CDx軸于D,若OA=OD=OB=3

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)觀察圖象直接寫出不等式0ax+b≤的解集;

3)在y軸上是否存在點P,使得△PBC是以BC為一腰的等腰三角形?如果存在,請直接寫出P點的坐標;如果不存在,請簡要說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學興趣小組想利用所學的知識了解某廣告牌的高度,已知CD2m.經測量,得到其它數(shù)據(jù)如圖所示.其中∠CAH37°,∠DBH67°,AB10m,請你根據(jù)以上數(shù)據(jù)計算GH的長.(參考數(shù)據(jù)tan67°, tan37°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,點C是半徑OA的中點,過點COA的垂線交AB于點E,且與BE的垂直平分線交于點D,連接BD

1)求證:BD是⊙O的切線;

2)若⊙O的半徑為2,CE1,試求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠BCA=90,AC=6,BC=8,DAB的中點,將△ACD沿直線CD折疊得到△ECD,連接BE,則線段BE的長等于(

A.5B.C.D.

查看答案和解析>>

同步練習冊答案