在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),則根據(jù)勾股定理,得a2+b2=c2.若△ABC不是直角三角形,如圖(2)和(3),請(qǐng)你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.
若△ABC為銳角三角形,則有a2+b2>c2,若△ABC為鈍角三角形,∠C為鈍角,則有a2+b2<c2.
【解析】
解:若△ABC為銳角三角形,則有a2+b2>c2,若△ABC為鈍角三角形,∠C為鈍角,則有a2+b2<c2.
證明:(1)當(dāng)△ABC為銳角三角形時(shí),過點(diǎn)A作AD⊥CB,垂足為D,設(shè)CD=x,則有DB=a-x.
根據(jù)勾股定理,得b2-x2=c2-(a-x)2,即b2-x2=c2-a2+2ax-x2.
∴a2+b2=c2+2ax.∵a>0,x>0,∴2ax>0,
∴a2+b2>c2.
(2)當(dāng)△ABC為鈍角三角形時(shí),過B作BD⊥AC,交AC的延長(zhǎng)線于點(diǎn)D,設(shè)CD=x,則BD2=a2-x2.根據(jù)勾股定理,得(b+x)2+(a2-x2)=c2,∴a2+b2+2bx=c2.
∵b>0,x>0,∴2bx>0,∴a2+b2<c2.
【難度】較難
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知在平行四邊形ABCD中,AE⊥BC,垂足為點(diǎn)E,AF⊥CD,垂足為點(diǎn)F.
(1)如果AB=AD,求證:EF∥BD;
(2)如果EF∥BD,求證:AB=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
五一”假期,某火車客運(yùn)站旅客流量不斷增大,旅客往往需要長(zhǎng)時(shí)間排隊(duì)等候檢票.經(jīng)調(diào)查發(fā)現(xiàn),在車站開始檢票時(shí),有640人排隊(duì)檢票.檢票開始后,仍有旅客繼續(xù)前來(lái)排隊(duì)檢票進(jìn)站.設(shè)旅客按固定的速度增加,檢票口檢票的速度也是固定的.檢票時(shí),每分鐘候車室新增排隊(duì)檢票進(jìn)站16人,每分鐘每個(gè)檢票口檢票14人.已知檢票的前a分鐘只開放了兩個(gè)檢票口.某一天候車室排隊(duì)等候檢票的人數(shù)y(人)與檢票時(shí)間x(分)之間的關(guān)系如圖所示.
(1)求a的值.
(2)求檢票到第20分鐘時(shí),候車室排隊(duì)等候檢票的旅客人數(shù).
(3)若要在開始檢票后15分鐘內(nèi)讓所有排隊(duì)的旅客都能檢票進(jìn)站,以便后來(lái)到站的旅客隨到隨檢,問:檢票一開始至少需要同時(shí)開放幾個(gè)檢票口?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A(2,a)(a>0),過點(diǎn)A作AB⊥x軸,垂足為點(diǎn)B,將線段AB沿x軸正方向平移,與反比例函數(shù)y=(x>0)的圖象相交于點(diǎn)F(p,q).
(1)當(dāng)F點(diǎn)恰好為線段的中點(diǎn)時(shí),求直線AF的解析式 (用含a的代數(shù)式表示);
(2)若直線AF分別與x軸、y軸交于點(diǎn)M、N,當(dāng)q=-a2+5a時(shí),令S=S△ANO+S△MFO(其中O是原點(diǎn)),求S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
.已知某開發(fā)區(qū)有一塊四邊形的空地ABCD,如圖所示,現(xiàn)計(jì)劃在該空地上種草皮,經(jīng)測(cè)量,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需200元,問:需要投入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在邊長(zhǎng)為10的菱形ABCD中,對(duì)角線BD=16,點(diǎn)O是直線BD上的動(dòng)點(diǎn),OE⊥AB于E,OF⊥AD于F.
(1)對(duì)角線AC的長(zhǎng)是 ,菱形ABCD的面積是 ;
(2)如圖1,當(dāng)點(diǎn)O在對(duì)角線BD上運(yùn)動(dòng)時(shí),OE+OF的值是否發(fā)生變化?請(qǐng)說(shuō)明理由;
(3)如圖2,當(dāng)點(diǎn)O在對(duì)角線BD的延長(zhǎng)線上時(shí),OE+OF的值是否發(fā)生變化?若不變,請(qǐng)說(shuō)明理由,若變化,請(qǐng)?zhí)骄縊E、OF之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,E為正方形ABCD對(duì)角線BD上的一點(diǎn),且BE=BC=1.
(1)求∠DCE的度數(shù);
(2)點(diǎn)P在EC上,作PM⊥BD于M,PN⊥BC于N,求PM+PN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于E,交AC于F,過點(diǎn)O作OD⊥AC于D.下列四個(gè)結(jié)論:
①∠BOC=90º+∠A;
②EF=BE+CF;
③設(shè)OD=m,AE+AF=n,則S△AEF=mn;
④EF是△ABC的中位線.
其中正確的結(jié)論是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com