【題目】RtABC中,∠ACB90°,D是△ABC內一點,連接AD,BD.在BD左側作RtBDE,使∠BDE90°,以ADDE為鄰邊作ADEF,連接CD,DF

1)若ACBC,BDDE

如圖1,當B,D,F三點共線時,CDDF之間的數(shù)量關系為 

如圖2,當BD,F三點不共線時,中的結論是否仍然成立?請說明理由.

2)若BC2AC,BD2DE,,且EC,F三點共線,求的值.

【答案】1DFCD,結論仍然成立.理由見解析;(2.

【解析】

1)①證明△BCD≌△ACFSAS),即可推出△DCF是等腰直角三角形解決問題;

②結論仍然成立.如圖2中,連接CF.延長BDAF的延長線于H,設ACBHG.證明方法類似①;

2)如圖3中,延長BDAFH.設BHACG.證明△CBD∽△CAF,推出,∠BCD=ACF,推出∠BCA=DCF=90°,證明∠ADC=90°,由CDAC=45,設CD=4kAC=5k,則AD=EF=3k,求出AF,CE(用k表示)即可解決問題.

1如圖1中,連接CF.設ACBFG

∵四邊形AFED是平行四邊形,

AFDEDEAF,

BDDE,

AFBD

∵∠BDE90°,

∴∠EDF=∠DFA90°=∠BCG,

∵∠CGB=∠AGF

∴∠CBD=∠CAF,

BCAC

∴△BCD≌△ACFSAS),

∴∠BCD=∠ACFCDCF,

∴∠BCA=∠DCF90°,

∴△CDF是等腰直角三角形,

DFCD

故答案為DFCD

結論仍然成立.

理由:如圖2中,連接CF.延長BDAF的延長線于H,設ACBHG

∵四邊形AFED是平行四邊形,

AFDE,DEAF,

BDDE,

AFBD,

∵∠BDE90°,

∴∠DEH=∠DHA90°=∠BCG,

∵∠CGB=∠AGH,

∴∠CBD=∠CAF

BCAC,

∴△BCD≌△ACFSAS),

∴∠BCD=∠ACF,CDCF,

∴∠BCA=∠DCF90°,

∴△CDF是等腰直角三角形,

DFCD

2)如圖3中,延長BDAFH.設BHACG

∵四邊形AFED是平行四邊形,

AFDE,DEAF

∵∠BDE90°,

∴∠DEH=∠DHA90°=∠BCG

∵∠CGB=∠AGH,

∴∠CBD=∠CAF,

,

,

∴△CBD∽△CAF,

,∠BCD=∠ACF

∴∠BCA=∠DCF90°,

ADEF,

∴∠ADC+DCF180°,

∴∠ADC90°,

CDAC45,設CD4k,AC5k,則ADEF3k

CFCD2k,

ECEFCFk,

DEAF,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場推銷一種書包,進價為30元,在試銷中發(fā)現(xiàn)這種書包每天的銷售量P(個)與每個書包銷售價x(元)滿足一次函數(shù)關系式.當定價為35元時,每天銷售30個;定價為40元時,每天銷售20個.

1)求P關于x的函數(shù)關系式;

2)如果要保證商場每天銷售這種書包獲利200元,求書包的銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,B60°AB2,動點P從點B出發(fā),以每秒1個單位長度的速度沿折線BAAC運動到點C,同時動點Q從點A出發(fā),以相同速度沿折線ACCD運動到點D,當一個點停止運動時,另一個點也隨之停止.設APQ的面積為y,運動時間為x秒,則下列圖象能大致反映yx之間函數(shù)關系的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在平面直角坐標系中的位置如圖所示(坐標系內正方形網(wǎng)格的單位長度為1):

(1)在網(wǎng)格內畫出和ABC以點O為位似中心的位似圖形△A1B1C1,使△A1B1C1ABC的位似比為2:1且△A1B1C1位于y軸左側;

(2)分別寫出A1、B1、C1三個點的坐標:A1   、B1   、C1   ;

(3)求△A1B1C1的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】媽媽給小紅和弟弟買了一本劉慈欣的小說《流浪地球》,姐弟倆都想先睹為快.是小紅對弟弟說:我們利用下面中心涂黑的九宮格圖案(如圖所示)玩一個游戲,規(guī)則如下:我從第一行,你從第三行,同時各自任意選取一個方格,涂黑,如果得到的新圖案是軸對稱圖形.我就先讀,否則你先讀.小紅設計的游戲對弟弟是否公平?請用畫樹狀圖或列表的方法說明理由.(第一行的小方格從左至右分別用A,B,C表示,第三行的小方格從左至右分別用DE,F表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正三角形的邊長為6cm,剪去三個角后成一個正六邊形.

1)求這個正六邊形的邊長.

2)求這個正六邊形的邊心距.

3)設這個正六邊形的中心為O,一邊為AB,則AB繞點O旋轉一周所得的圖形是怎樣的?(作圖表示出來)并求出這條線段AB劃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,池塘邊一棵垂直于水面BM的筆直大樹AB在點C處折斷,AC部分倒下,點A與水面上的點E重合,部分沉入水中后,點A與水中的點F重合,CF交水面于點D,DF2m,∠CEB30°,∠CDB45°,求CB部分的高度.(精確到0.1m.參考數(shù)據(jù):≈1.41,≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有甲、乙兩個不透明的布袋,甲袋中裝有3個完全相同的小球,分別標有數(shù)字0、1、2;乙袋中裝有3個完全相同的小球,分別標有數(shù)字-1、-2、0;先從甲袋中隨機取出一個小球,記錄標有的數(shù)字為x,再從乙袋中隨機取出一個小球,記錄標有的數(shù)字為y,確定點M的坐標為(xy).

(1)用樹狀圖或列表法列舉點M所有可能的坐標;

(2)求點Mxy)在函數(shù)y=-x2-1的圖象上的概率;

(3)若以點M為圓心,2為半徑作M,求M與坐標軸相切的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2(k1)xk210

(1) k取何值方程有兩個實數(shù)根

(2) 是否存在k值使方程的兩根為一個矩形的兩鄰邊長,且矩形的對角線長為

查看答案和解析>>

同步練習冊答案