如圖,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.將△ABC繞直角頂點C逆時針旋轉(zhuǎn)60°得△A′B′C,則點B轉(zhuǎn)過的路徑長為( 。
A. B. C. D. π
B考點: 旋轉(zhuǎn)的性質(zhì);弧長的計算.
專題: 幾何圖形問題.
分析: 利用銳角三角函數(shù)關(guān)系得出BC的長,進而利用旋轉(zhuǎn)的性質(zhì)得出∠BCB′=60°,再利用弧長公式求出即可.
解答: 解:∵在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,
∴cos30°=,
∴BC=ABcos30°=2×=,
∵將△ABC繞直角頂點C逆時針旋轉(zhuǎn)60°得△A′B′C,
∴∠BCB′=60°,
∴點B轉(zhuǎn)過的路徑長為:=π.
故選:B.
點評: 此題主要考查了旋轉(zhuǎn)的性質(zhì)以及弧長公式應(yīng)用,得出點B轉(zhuǎn)過的路徑形狀是解題關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
已知圖中的曲線函數(shù)(m為常數(shù))圖象的一支.
(1)求常數(shù)m的取值范圍;
(2)若該函數(shù)的圖象與正比例函數(shù)y=2x圖象在第一象限的交點為A(2,n),求點A的坐標及反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,AB=8,BC=16,點P從點A開始沿AB向點B以2m/s的速度移動,點Q從點B開始沿BC向點C以4m/s的速度移動,如果P,Q分別從AB,BC同時出發(fā),經(jīng)過幾秒△PBQ與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在一個不透明的口袋中,裝有n個除顏色不同其余都相同的球,如果口袋中裝有4個紅球且摸到紅球的概率為,那么n等于( 。
A. 10個 B. 12個 C. 16個 D. 20個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點C,AC平分∠DAB.
(1)求證:AD⊥DC;
(2)若AD=2,AC=,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com