【題目】如圖,已知拋物線yx2bxc過點A(3, 0)、點B(0, 3).點M(m, 0)在線段OA上(與點A、O不重合),過點Mx軸的垂線與線段AB交于點P,與拋物線交于點Q,聯(lián)結(jié)BQ

1)求拋物線表達(dá)式;

2)聯(lián)結(jié)OP,當(dāng)∠BOP=∠PBQ時,求PQ的長度;

3)當(dāng)PBQ為等腰三角形時,求m的值.

【答案】(1) yx22x3;(2) ;(3) m的值為2、1.

【解析】

1)將點A (3, 0)、點B (0, 3) 分別代入拋物線解析式yx2bxc,化簡求出b,c的值即可;

2)根據(jù)∠BOP =∠PBQMQOB,可證OBP ∽△BPQ,可設(shè)Qx,x22x3),求出直線AB的解析式,則可得P 的坐標(biāo)為(x3x),可得BPx,OB3,PQx23x,利用相似三角形的對應(yīng)邊成立比例即可求解;

3)分三種情況討論:①當(dāng)BQPQ時,②當(dāng)BPPQ時,③當(dāng)BPBQ時,然后分別求解即可.

1)∵將點A (3, 0)、點B (0, 3) 分別代入拋物線解析式yx2bxc

,解之得:

∴拋物線的解析式為yx22x3

2

∵∠BOP =∠PBQMQOB

∴∠OBP =∠BPQ

∴△OBP ∽△BPQ

設(shè)Qxx22x3

P點在直線AB上,并A (3, 0)、B (0, 3),

則直線AB的解析式為:

P (x3x)

BPx,OB3,PQx23x

0舍去)

3)∵Mm0),Pm,3m),Qm,m22m3

BPm,PQm23m且∠BPQ45°

∴當(dāng)BPQ為等腰三角形時,存在如下情況:

①如圖1,當(dāng)BQPQ時,即∠PBQ=∠BPQ45°

BPQ為等腰直角三角形 m22m33

m2

②當(dāng)BPPQ,mm23m,即0舍去)

③如圖2,當(dāng)BPBQ時,∠BQP=∠BPQ45°

根據(jù),可得

則有

m1

綜上所述,m的值為2、1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高中學(xué)校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學(xué)生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標(biāo)準(zhǔn),共分為6種型號).

根據(jù)以上信息,解答下列問題:

1)該班共有多少名學(xué)生?其中穿175型校服的學(xué)生有多少?

2)在條形統(tǒng)計圖中,請把空缺部分補充完整.

3)在扇形統(tǒng)計圖中,請計算185型校服所對應(yīng)的扇形圓心角的大。

4)求該班學(xué)生所穿校服型號的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙OAB是⊙O的直徑,直線AE是⊙O的切線,CD平分∠ACB,若∠CAE=21°,則∠BFC的度數(shù)為( )

A.66°B.111°C.114°D.119°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1:y=ax2﹣4ax﹣5(a0).

(1)當(dāng)a=1時,求拋物線與x軸的交點坐標(biāo)及對稱軸;

(2)試說明無論a為何值,拋物線C1一定經(jīng)過兩個定點,并求出這兩個定點的坐標(biāo);

將拋物線C1沿這兩個定點所在直線翻折,得到拋物線C2,直接寫出C2的表達(dá)式;

(3)若(2)中拋物線C2的頂點到x軸的距離為2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長是6,∠A60°,EAD的中點,FAB邊上一個動點,EGEF且∠GEF60°,則GB+GC的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC=4,∠C=90°,點DBC上,且CD=3DB,將△ABC折疊,使點A與點D重合,EF為折痕,則tanBED的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,運載火箭從地面L處垂直向上發(fā)射,當(dāng)火箭到達(dá)A點時,從位于地面R處的雷達(dá)測得AR的距離是40km,仰角是30°,n秒后,火箭到達(dá)B點,此時仰角是45°,則火箭在這n秒中上升的高度是_____km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù),在下列結(jié)論中,不正確的是( 。

A.圖象必經(jīng)過點(4

B.圖象過第一、三象限

C.x-1,則y-6

D. 、是圖象上的兩點, ,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過兩點的拋物線軸于兩點,是拋物線上一動點,平行于軸的直線經(jīng)過點

(1)求拋物線的解析式;

(2)如圖1,軸上有點連接,設(shè)點到直線的距離為.小明在探究的值的過程中,是這樣思考的:當(dāng)是拋物線的頂點時,計算的值;當(dāng)不是拋物線的頂點時,猜想是一個定值.請你直接寫出的值,并證明小明的猜想.

(3)如圖2,點在第二象限,分別連接、,并延長交直線兩點.若兩點的橫坐標(biāo)分別為,試探究之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案