【題目】在平面直角坐標(biāo)系中,規(guī)定:拋物線的伴隨直線為.例如:拋物線的伴隨直線為,即.
(1)在上面規(guī)定下,拋物線的頂點(diǎn)為 .伴隨直線為 ;拋物線與其伴隨直線的交點(diǎn)坐標(biāo)為 和 ;
(2)如圖,頂點(diǎn)在第一象限的拋物線與其伴隨直線相交于點(diǎn)(點(diǎn)在點(diǎn)的右側(cè))與軸交于點(diǎn)
①若求的值;
②如果點(diǎn)是直線上方拋物線的一個(gè)動(dòng)點(diǎn),的面積記為,當(dāng)取得最大值時(shí),求的值.
【答案】(1)(﹣1,﹣4),y=x﹣3,(0,﹣3),(﹣1,﹣4);(2)①m的值為;②m=-2.
【解析】
(1)根據(jù)題干中的定義即可找出其伴隨直線為y=(x+1)﹣4,即y=x﹣3,再聯(lián)立拋物線求解即可
(2)①先與其伴隨直線聯(lián)立求得交點(diǎn),再求出拋物線與x軸的交點(diǎn)C,D,根據(jù)∠CAB=90°由勾股定理求出m;
②設(shè)直線BC的解析式為y=kx+b.將B(2,-3m),C(-1,0)代入求出y=-mx-m.過(guò)P作x軸的垂線交BC于點(diǎn)Q,將三角形面積用含m的表達(dá)式表示出來(lái)即可
(1)由伴隨直線的定義可得其伴隨直線為y=(x+1)﹣4,即y=x﹣3,
聯(lián)立拋物線與伴隨直線的解析式可得,解得或,∴其交點(diǎn)坐標(biāo)為(0,﹣3)和(﹣1,﹣4).
故答案為:(﹣1,﹣4);y=x﹣3;(0,﹣3);(﹣1,﹣4);
(2)①∵拋物線解析式為y=m(x-1)2-4m,∴其伴隨直線為y=m(x-1)-4m,即y=mx-5m.
聯(lián)立拋物線與伴隨直線的解析式可得解得或,∴A(1,-4m),B(2,-3m).
在y=m(x-1)2-4m中,
令y=0可得x=-1或x=3,∴C(-1,0),D(3,0),∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2.
∵∠CAB=90°,∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得:m= (拋物線開(kāi)口向下,舍去)或m=-,∴當(dāng)∠CAB=90°時(shí),m的值為-.
②設(shè)直線BC的解析式為y=kx+b.
∵B(2,-3m),C(-1,0),∴,解得,∴直線BC的解析式為y=-mx-m.
過(guò)P作x軸的垂線交BC于點(diǎn)Q.
∵點(diǎn)P的橫坐標(biāo)為x,∴P(x,m(x-1)2-4m),Q(x,-mx-m).
∵P是直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn),∴PQ=m(x-1)2-4m+mx+m=m(x2-x-2)=m[(x-)2-],∴S△PBC=×[2-(-1)]PQ=m(x-)2-m,∴當(dāng)x=時(shí),△PBC的面積有最大值-m,∴S取最大時(shí),即-m=,解得:m=-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形在平面直角坐標(biāo)系的位置如圖所示,,,,點(diǎn)是對(duì)角線上的一個(gè)動(dòng)點(diǎn),,當(dāng)周長(zhǎng)最小時(shí),點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情期間,甲廠欲購(gòu)買(mǎi)某種無(wú)紡布生產(chǎn)口罩,A、B兩家無(wú)紡布公司各自給出了該種無(wú)紡布的銷(xiāo)售方案.
A公司方案:無(wú)紡布的價(jià)格y(萬(wàn)元)與其重量x(噸)是如圖所示的函數(shù)關(guān)系;
B公司方案:無(wú)紡布不超過(guò)30噸時(shí),每噸收費(fèi)2萬(wàn)元;超過(guò)30噸時(shí),超過(guò)的部分每噸收費(fèi)1.9萬(wàn)元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫(xiě)出定義域)
(2)如果甲廠所需購(gòu)買(mǎi)的無(wú)紡布是40噸,試通過(guò)計(jì)算說(shuō)明選擇哪家公司費(fèi)用較少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家創(chuàng)新指數(shù)是反映一個(gè)國(guó)家科學(xué)技術(shù)和創(chuàng)新競(jìng)爭(zhēng)力的綜合指數(shù).對(duì)國(guó)家創(chuàng)新指數(shù)得分排名前40的國(guó)家的有關(guān)數(shù)據(jù)進(jìn)行收集、整理、描述和分析.下面給出了部分信息:
a.國(guó)家創(chuàng)新指數(shù)得分的頻數(shù)分布直方圖(數(shù)據(jù)分成7組:
30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.國(guó)家創(chuàng)新指數(shù)得分在60≤x<70這一組的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5
c.40個(gè)國(guó)家的人均國(guó)內(nèi)生產(chǎn)總值和國(guó)家創(chuàng)新指數(shù)得分情況統(tǒng)計(jì)圖:
d.中國(guó)的國(guó)家創(chuàng)新指數(shù)得分為69.5.
(以上數(shù)據(jù)來(lái)源于《國(guó)家創(chuàng)新指數(shù)報(bào)告(2018)》)
根據(jù)以上信息,回答下列問(wèn)題:
(1)中國(guó)的國(guó)家創(chuàng)新指數(shù)得分排名世界第______;
(2)在40個(gè)國(guó)家的人均國(guó)內(nèi)生產(chǎn)總值和國(guó)家創(chuàng)新指數(shù)得分情況統(tǒng)計(jì)圖中,包括中國(guó)在內(nèi)的少數(shù)幾個(gè)國(guó)家所對(duì)應(yīng)的點(diǎn)位于虛線的上方.請(qǐng)?jiān)趫D中用“”圈出代表中國(guó)的點(diǎn);
(3)在國(guó)家創(chuàng)新指數(shù)得分比中國(guó)高的國(guó)家中,人均國(guó)內(nèi)生產(chǎn)總值的最小值約為______萬(wàn)美元;(結(jié)果保留一位小數(shù))
(4)下列推斷合理的是______.
①相比于點(diǎn)A,B所代表的國(guó)家,中國(guó)的國(guó)家創(chuàng)新指數(shù)得分還有一定差距,中國(guó)提出“加快建設(shè)創(chuàng)新型國(guó)家”的戰(zhàn)略任務(wù),進(jìn)一步提高國(guó)家綜合創(chuàng)新能力;
②相比于點(diǎn)B,C所代表的國(guó)家,中國(guó)的人均國(guó)內(nèi)生產(chǎn)總值還有一定差距,中國(guó)提出“決勝全面建成小康社會(huì)”的奮斗目標(biāo),進(jìn)一步提高人均國(guó)內(nèi)生產(chǎn)總值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書(shū)畫(huà)作品,楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班(用A,B,C,D表示),對(duì)征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,回答下列問(wèn)題:
(1)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整,并估計(jì)全校共征集多少件作品?
(3)如果全校征集的作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹(shù)狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+bx﹣3經(jīng)過(guò)點(diǎn)A(1,0),頂點(diǎn)為點(diǎn)M.
(1)求拋物線的表達(dá)式及頂點(diǎn)M的坐標(biāo);
(2)求∠OAM的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為2的菱形ABCD中,BD=2,E、F分別是AD,CD上的動(dòng)點(diǎn)(包含端點(diǎn)),且AE+CF=2,則線段EF長(zhǎng)的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E、F分別是邊AB、AC、BC的中點(diǎn),要判定四邊形DBFE是菱形,下列所添加條件不正確的是( 。
A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)“書(shū)香學(xué)校,書(shū)香班級(jí)”的建設(shè)號(hào)召,平頂山市某中學(xué)積極行動(dòng),學(xué)校圖書(shū)角的新書(shū)、好書(shū)不斷增加.下面是隨機(jī)抽查該校若干名同學(xué)捐書(shū)情況統(tǒng)計(jì)圖:
請(qǐng)根據(jù)下列統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:
(1)此次隨機(jī)調(diào)查同學(xué)所捐圖書(shū)數(shù)的中位數(shù)是 ,眾數(shù)是 ;
(2)在扇形統(tǒng)計(jì)圖中,捐2本書(shū)的人數(shù)所占的扇形圓心角是多少度?
(3)若該校有在校生1600名學(xué)生,估計(jì)該校捐4本書(shū)的學(xué)生約有多少名?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com