【題目】如圖,有一張矩形紙條ABCD,AB=5cm,BC=2cm,點(diǎn)M,N分別在邊AB,CD上,CN=1cm.現(xiàn)將四邊形BCNM沿MN折疊,使點(diǎn)B,C分別落在點(diǎn)B',C'上.當(dāng)點(diǎn)B'恰好落在邊CD上時(shí),線段BM的長(zhǎng)為_____cm;在點(diǎn)M從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B的過(guò)程中,若邊MB'與邊CD交于點(diǎn)E,則點(diǎn)E相應(yīng)運(yùn)動(dòng)的路徑長(zhǎng)為_____cm.
【答案】
【解析】
第一個(gè)問(wèn)題證明BM=MB′=NB′,求出NB即可解決問(wèn)題.第二個(gè)問(wèn)題,探究點(diǎn)E的運(yùn)動(dòng)軌跡,尋找特殊位置解決問(wèn)題即可.
如圖1中,
∵四邊形ABCD是矩形,
∴AB∥CD,
∴∠1=∠3,
由翻折的性質(zhì)可知:∠1=∠2,BM=MB′,
∴∠2=∠3,
∴MB′=NB′,
∵NB′===(cm),
∴BM=NB′=(cm).
如圖2中,當(dāng)點(diǎn)M與A重合時(shí),AE=EN,設(shè)AE=EN=xcm,
在Rt△ADE中,則有x2=22+(4﹣x)2,解得x=,
∴DE=4﹣=(cm),
如圖3中,當(dāng)點(diǎn)M運(yùn)動(dòng)到MB′⊥AB時(shí),DE′的值最大,DE′=5﹣1﹣2=2(cm),
如圖4中,當(dāng)點(diǎn)M運(yùn)動(dòng)到點(diǎn)B′落在CD時(shí),DB′(即DE″)=5﹣1﹣=(4﹣)(cm),
∴點(diǎn)E的運(yùn)動(dòng)軌跡E→E′→E″,運(yùn)動(dòng)路徑=EE′+E′B′=2﹣+2﹣(4﹣)=()(cm).
故答案為,().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過(guò)上一點(diǎn)E作EG∥AC交CD的延長(zhǎng)線于點(diǎn)G,連結(jié)AE交CD于點(diǎn)F,且EG=FG,連結(jié)CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長(zhǎng)AB交GE的延長(zhǎng)線于點(diǎn)M,若tanG=,AH=,求EM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與y軸交于點(diǎn)C,與反比例函數(shù)y=(k≠0)的圖象交于A,B兩點(diǎn),點(diǎn)A在第一象限,縱坐標(biāo)為4,點(diǎn)B在第三象限,BM⊥x軸,垂足為點(diǎn)M,BM=OM=2.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)連接OB,MC,求四邊形MBOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形具有不穩(wěn)定性,對(duì)于四條邊長(zhǎng)確定的四邊形.當(dāng)內(nèi)角度數(shù)發(fā)生變化時(shí),其形狀也會(huì)隨之改變.如圖,改變正方形ABCD的內(nèi)角,正方形ABCD變?yōu)榱庑?/span>ABC′D′.若∠D′AB=30°,則菱形ABC′D′的面積與正方形ABCD的面積之比是( )
A.1B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)承接了27000件產(chǎn)品的生產(chǎn)任務(wù),計(jì)劃安排甲、乙兩個(gè)車(chē)間的共50名工人,合作生產(chǎn)20天完成.已知甲、乙兩個(gè)車(chē)間利用現(xiàn)有設(shè)備,工人的工作效率為:甲車(chē)間每人每天生產(chǎn)25件,乙車(chē)間每人每天生產(chǎn)30件.
(1)求甲、乙兩個(gè)車(chē)間各有多少名工人參與生產(chǎn)?
(2)為了提前完成生產(chǎn)任務(wù),該企業(yè)設(shè)計(jì)了兩種方案:
方案一 甲車(chē)間租用先進(jìn)生產(chǎn)設(shè)備,工人的工作效率可提高20%,乙車(chē)間維持不變.
方案二 乙車(chē)間再臨時(shí)招聘若干名工人(工作效率與原工人相同),甲車(chē)間維持不變.
設(shè)計(jì)的這兩種方案,企業(yè)完成生產(chǎn)任務(wù)的時(shí)間相同.
①求乙車(chē)間需臨時(shí)招聘的工人數(shù);
②若甲車(chē)間租用設(shè)備的租金每天900元,租用期間另需一次性支付運(yùn)輸?shù)荣M(fèi)用1500元;乙車(chē)間需支付臨時(shí)招聘的工人每人每天200元.問(wèn):從新增加的費(fèi)用考慮,應(yīng)選擇哪種方案能更節(jié)省開(kāi)支?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在籃球比賽中,東東投出的球在點(diǎn)A處反彈,反彈后球運(yùn)動(dòng)的路線為拋物線的一部分(如圖1所示建立直角坐標(biāo)系),拋物線頂點(diǎn)為點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式.
(2)當(dāng)球運(yùn)動(dòng)到點(diǎn)C時(shí)被東東搶到,CD⊥x軸于點(diǎn)D,CD=2.6m.
①求OD的長(zhǎng).
②東東搶到球后,因遭對(duì)方防守?zé)o法投籃,他在點(diǎn)D處垂直起跳傳球,想將球沿直線快速傳給隊(duì)友華華,目標(biāo)為華華的接球點(diǎn)E(4,1.3).東東起跳后所持球離地面高度h1(m)(傳球前)與東東起跳后時(shí)間t(s)滿(mǎn)足函數(shù)關(guān)系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在點(diǎn)F(1.5,0)處攔截,他比東東晚0.3s垂直起跳,其攔截高度h2(m)與東東起跳后時(shí)間t(s)的函數(shù)關(guān)系如圖2所示(其中兩條拋物線的形狀相同).東東的直線傳球能否越過(guò)小戴的攔截傳到點(diǎn)E?若能,東東應(yīng)在起跳后什么時(shí)間范圍內(nèi)傳球?若不能,請(qǐng)說(shuō)明理由(直線傳球過(guò)程中球運(yùn)動(dòng)時(shí)間忽略不計(jì)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(性質(zhì)探究)
如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AE平分∠BAC,交BC于點(diǎn)E.作DF⊥AE于點(diǎn)H,分別交AB,AC于點(diǎn)F,G.
(1)判斷△AFG的形狀并說(shuō)明理由.
(2)求證:BF=2OG.
(遷移應(yīng)用)
(3)記△DGO的面積為S1,△DBF的面積為S2,當(dāng)時(shí),求的值.
(拓展延伸)
(4)若DF交射線AB于點(diǎn)F,(性質(zhì)探究)中的其余條件不變,連結(jié)EF,當(dāng)△BEF的面積為矩形ABCD面積的時(shí),請(qǐng)直接寫(xiě)出tan∠BAE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的8×9的網(wǎng)格中,已知△ABC的頂點(diǎn)均為網(wǎng)格線的交點(diǎn).
(1)在給定的網(wǎng)格中,畫(huà)出△ABC關(guān)于直線AB對(duì)稱(chēng)的△ABC1.
(2)將△ABC1繞著點(diǎn)O旋轉(zhuǎn)后能與△ABC重合,請(qǐng)?jiān)诰W(wǎng)格中畫(huà)出點(diǎn)O的位置.
(3)在給定的網(wǎng)格中,畫(huà)出以點(diǎn)C為位似中心,將△ABC放大為原來(lái)的2倍后得到的△A2B2C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 在矩形紙片中, , 點(diǎn),分別是,的中點(diǎn), 點(diǎn),分別在,上, 且.將沿折疊, 點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),將沿折疊, 點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),當(dāng)四邊形為菱形時(shí), 則_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com