【題目】如圖, 在矩形紙片中, , 分別是的中點, ,分別在,上, .沿折疊, 的對應點為點,將沿折疊, 的對應點為點,當四邊形為菱形時, _______

【答案】

【解析】

連接MN,PQ交于點O,延長PQCDH,延長QPABG.解直角三角形求出AG,EG即可解決問題.

如圖,連接MN,PQ交于點O,延長PQCDH,延長QPABG

∵四邊形PNQM是菱形,

MNPQ

∵點M、N分別是ADBC的中點,

AM=BN

又∵矩形ABCD中,AMBN,∠A=90°,

∴四邊形AMNB是矩形,

∴∠AMN=90°

PQADBC,

AG=DK=OM=AB=AD=1

PM=AM=2,

sinMPO=,

∴∠MPO=30°,

∵∠EPM=90°,

∴∠EPG=90°-30°=60°

OP=OM=,

OG=2,

EG=PGtan60°=2-3,

GP=2-

AE=AG-EG=1-2-3=4-2

故答案為:4-2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一張矩形紙條ABCD,AB5cmBC2cm,點MN分別在邊AB,CD上,CN1cm.現(xiàn)將四邊形BCNM沿MN折疊,使點BC分別落在點B',C'上.當點B'恰好落在邊CD上時,線段BM的長為_____cm;在點M從點A運動到點B的過程中,若邊MB'與邊CD交于點E,則點E相應運動的路徑長為_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內接于⊙O,CBG=A,CD為直徑,OCAB相交于點E,過點EEFBC,垂足為F,延長CDGB的延長線于點P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點,點軸正半軸上,以為一邊作等腰直角,使得點在第一象限.

1)求出所有符合題意的點的坐標;

2)在內部存在一點,使得之和最小,請求出這個和的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2bx6的圖像開口向下,與x軸交于點A(-60)和點B2,0),與y軸交于點C,點P是該函數(shù)圖像上的一個動點(不與點C重合)

1 求二次函數(shù)的關系式;

2)如圖1當點P是該函數(shù)圖像上一個動點且在線段的上方,若PCA的面積為12,求點P的坐標;

3)如圖2,該函數(shù)圖像的頂點為D,在該函數(shù)圖像上是否存在點E,使得∠EAB2DAC,若存在請直接寫出點E的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(方法回顧)

課本研究三角形中位線性質的方法

已知:如圖①, 已知中,,分別是兩邊中點.

求證:,

證明:延長至點,使, 連按.可證:(  )

由此得到四邊形為平行四邊形, 進而得到求證結論

1)請根據(jù)以上證明過程,解答下列兩個問題:

①在圖①中作出證明中所描述的輔助線(請用鉛筆作輔助線);

②在證明的括號中填寫理由(請在,,中選擇) .

(問題拓展)

2)如圖②,在等邊中, 是射線上一動點(點在點的右側),把線段繞點逆時針旋轉得到線段,點是線段的中點,連接、

①請你判斷線段的數(shù)量關系,并給出證明;

②若,求線段長度的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車沿同一條道路從地出發(fā)向1200外的地輸送緊急物資,甲在途中休息了3小時,休息前后的速度不同,最后兩車同時到達地,如圖甲、乙兩車到地的距離(千米)與乙車行駛時間(小時)之間的函數(shù)圖象.

1)甲車休息前的行駛速度為 千米/時,乙車的速度為 千米/時;

2)當9≤≤15,求甲車的行駛路程之間的函數(shù)關系式;

3)直接寫出甲出發(fā)多長時間與乙在途中相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線為常數(shù),)與軸交于,兩點,與軸交于點.設該拋物線的頂點為,其對稱軸與軸的交點為

1)求該拋物線的解析式;

2為線段(含端點)上一點,軸上一點,且

①求的取值范圍;

②當取最大值時,將線段向上平移個單位長度,使得線段與拋物線有兩個交點,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為l的正方形ABCD中,E是邊CD的中點,點P是邊AD上一點(與點A、D不重合),射線PEBC的延長線交于點Q

1)求證:;

2)過點EPB于點F,連結AF,當時,①求證:四邊形AFEP是平行四邊形;

②請判斷四邊形AFEP是否為菱形,并說明理由.

查看答案和解析>>

同步練習冊答案