【題目】如圖,已知函數(shù) y=x+1 的圖象與 y 軸交于點(diǎn) A,一次函數(shù) y=kx+b 的圖象經(jīng)過點(diǎn) B(0,﹣1),與x 軸 以及 y=x+1 的圖象分別交于點(diǎn) C、D,且點(diǎn) D 的坐標(biāo)為(1,n),

(1)則n= ,k= ,b= ;
(2)函數(shù) y=kx+b 的函數(shù)值大于函數(shù) y=x+1 的函數(shù)值,則X的取值范圍是
(3)求四邊形 AOCD 的面積;
(4)在 x軸上是否存在點(diǎn) P,使得以點(diǎn) P,C,D 為頂點(diǎn)的三角形是直角三角形?若存在求出點(diǎn) P 的坐標(biāo); 若不存在,請(qǐng)說明理由.

【答案】
(1)2,3,-1
(2)
(3)解:過D作 垂直于 軸,如圖1所示,


(4)解:如圖2,

軸上存在點(diǎn)P,使得以點(diǎn)P、C、D為頂點(diǎn)的三角形是直角三角形,

理由:分兩種情況考慮:

當(dāng) 時(shí),可得 斜率為3,

斜率為 ,

解析式為 當(dāng) 時(shí),由D橫坐標(biāo)為1,得到P點(diǎn)橫坐標(biāo)為1, 軸上,


【解析】(1)用待定系數(shù)法求出n、k、b的值;(2)根據(jù)函數(shù)圖像和D點(diǎn)的坐標(biāo)求出X的取值范圍;(3)根據(jù)圖像得到S四邊形AOCD=S梯形AOEDS△CDE
求出四邊形 AOCD 的面積;(4)分兩種情況討論,當(dāng)DP'⊥DC時(shí),由直線DC的斜率為3,得到直線P'D斜率為,求出直線P'D解析式,由D橫坐標(biāo)為1,得到P點(diǎn)橫坐標(biāo)為1,得到P點(diǎn)的坐標(biāo).
【考點(diǎn)精析】利用確定一次函數(shù)的表達(dá)式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)容量為50的樣本中,數(shù)據(jù)的最大值是123,最小值是45,若取每組終點(diǎn)值與起點(diǎn)值的差為10,則該樣本可以分(  )
A.5組或6組
B.6組或7組
C.7組或8組
D.8組或9組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的兩個(gè)內(nèi)角∠A=30°,B=70°,則ABC( )

A. 銳角三角形 B. 直角三角形 C. 鈍角三角形 D. 等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(1,3),點(diǎn)B(5,1).

(1)只用直尺(無刻度)和圓規(guī),求作一個(gè)點(diǎn)P,使點(diǎn)P同時(shí)滿足下列兩個(gè)條件:①點(diǎn)P到A,B兩點(diǎn)的距離相等; ②點(diǎn)P到∠xOy的兩邊的距離相等.(要求保留作圖痕跡,不必寫出作法)
(2)在(1)作出點(diǎn)P后,點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】命題在同一個(gè)三角形中,等角對(duì)等邊的逆命題是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2+4x+7的最小值是(
A.3
B.4
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:x3﹣x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人將一枚質(zhì)量均勻的硬幣連續(xù)拋10次,落地后正面朝上6次,反面朝上4次,下列說法正確的是( 。
A.出現(xiàn)正面的頻率是6
B.出現(xiàn)正面的頻率是60%
C.出現(xiàn)正面的頻率是4
D.出現(xiàn)正面的頻率是40%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)的小紅同學(xué),在自己家附近進(jìn)行測量一座樓房高度的實(shí)踐活動(dòng).如圖,她在山坡坡腳A出測得這座樓房的樓頂B點(diǎn)的仰角為60°,沿山坡往上走到C處再測得B點(diǎn)的仰角為45°.已知OA=200m,此山坡的坡比i=,且O、A、D在同一條直線上.

求:(1)樓房OB的高度;

(2)小紅在山坡上走過的距離AC.(計(jì)算過程和結(jié)果均不取近似值)

查看答案和解析>>

同步練習(xí)冊(cè)答案