【題目】如圖是某地下停車庫入口的設計示意圖,已知AB⊥BD,坡道AD的坡度i=1:2.4(指坡面的鉛直高度BD與水平寬度AB的比),AB=7.2 m,點C在BD上,BC=0.4 m,CE⊥AD.按規(guī)定,地下停車庫坡道口上方要張貼限高標志,以便告知停車人車輛能否安全駛入,請根據(jù)以上數(shù)據(jù),求出該地下停車庫限高CE的長.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B為反比例函數(shù)y=在第一象限上的兩點,AC⊥y軸于點C,BD⊥x軸于點D,若B點的橫坐標是A點橫坐標的一半,且圖中陰影部分的面積為k﹣2,則k的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=4,∠CAB=30°,以AB的中點為圓心,OA的長為半徑作半圓交AC于點D,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,BD=AB,∠ABD=30°,將平行四邊形ABCD繞點A旋轉至平行四邊形AMNE的位置,使點E落在BD上, ME交AB于點O, 則的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】港口 A、B、C 依次在同一條直線上,甲、乙兩艘船同時分別從 A、B兩港出發(fā),勻速駛向 C 港,甲、乙兩船與 B 港的距離 y(海里)與行駛時間 x 時)之間的函數(shù)關系如圖所示,則下列說法錯誤的是( )
A.甲船平均速度為 60 海里/時B.乙船平均速度為 30 海里/時
C.甲、乙兩船在途中相遇兩次D.A、C 兩港之間的距離為 120 海里
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y ax2 - 2ax 3a交 x 軸正半軸于點 A,負半軸于點 B,交 y 軸于點C,tan∠OBC=3.
(1)求 a 值;
(2)點 P 為第一象限拋物線上一點,連接 AC、PA、PC,若點 P 的橫坐標為 t, PAC 的面積為S,求 S與t的函數(shù)解析式,(請直接寫出自變量 t 的取值范圍);
(3)在(2)的條件下,過點 P 作 PD∥y 軸交 CA 延長線于點 D,連接 PB,交 y 軸于點 E,點 Q 為第二象限拋物線上一點,連接 QE 并延長分別交 x 軸、拋物線于點 N、F,連接 FD,交 x 軸于點 K ,當E 為 QF 的中點且 FN=FK 時,求直線 DF 的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地為了促進旅游業(yè)的發(fā)展,要在如圖所示的三條公路,,圍成的一塊地上修建一個度假村,要使這個度假村到,兩條公路的距離相等,且到,兩地的距離相等,下列選址方法繪圖描述正確的是( )
A.畫的平分線,再畫線段的垂直平分線,兩線的交點符合選址條件
B.先畫和的平分線,再畫線段的垂直平分線,三線的交點符合選址條件
C.畫三個角,和三個角的平分線,交點即為所求
D.畫,,三條線段的垂直平分線,交點即為所求
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=45°,∠ABC=60°,AB=4,D是邊BC上的一個動點,以AD為直徑畫⊙O分別交AB、AC于點E、F,則弦EF長度的最小值為( )
A.B.C.2D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com