精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知點、在直線上,點在線段上,交于點,,

1)請說明:;

2)若,求的度數.

【答案】(1)詳見解析;(2)110°.

【解析】

1)根據∠CED=∠GHD推出CEGF,結合已知條件推出∠DGF=∠EFG從而證明結論;

2)根據已知條件,利用三角形內角和定理可求出∠C=180°80°30°=70°,利用平行線的性質得出∠AEC=∠C=70°,進一步即可得出答案.

解:(1)證明:∵∠CED=∠GHD

CEGF

∴∠C=∠DGF

又∵∠C=∠EFG

∴∠DGF=∠EFG

ABCD

(2)解:∵∠CED=∠GHD,∠GHD=∠EHF=80°

∴∠CED80°

在△CDE中,∠CED80°,∠D30°

∴∠C=180°80°30°=70°

ABCD

∴∠AEC=∠C=70°

∴∠AEM=180°-AEC=180°-70°=110°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P,給出如下定義:記點Px軸的距離為,到y軸的距離為,若,則稱為點P的最大距離;若,則稱為點P的最大距離.

例如:點P,)到到x軸的距離為4,到y軸的距離為3,因為3 < 4,所以點P的最大距離為.

(1)①點A(2,)的最大距離為 ;

②若點B,)的最大距離為,則的值為

(2)若點C在直線上,且點C的最大距離為,求點C的坐標;

(3)若⊙O存在M,使點M的最大距離為,直接寫出⊙O的半徑r的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連結CE,DF,下列說法不正確的是  

A. 四邊形CEDF是平行四邊形

B. 時,四邊形CEDF是矩形

C. 時,四邊形CEDF是菱形

D. 時,四邊形CEDF是菱形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩地之間的高速公路全長200千米,比原來國道的長度減少了20千米.高速公路通車后,某長途汽車的行駛速度提高了45千米/時,從甲地到乙地的行駛時間縮短了一半,求長途汽車在原來國道上行駛的速度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD和正方形EFGH的中心重合,,分別延長FE,GF,HGEHABBC,CD,AD于點I,JK,,則AI的長為______,四邊形AIEL的面積為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某中學有一塊四邊形的空地ABCD,學校計劃在空地上種植草皮,經測量∠A=90°,AB=3mBC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問學校需要投入多少資金買草皮?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問題:

例題:解一元二次不等式,

解:∵,∴可化為,

由有理數的乘法法則兩數相乘,同號得正,有

1或(2

解不等式組(1),得,解不等式組(2),得,

的解集為,

即一元二次不等式的解集為

問題:(1)一元二次不等式的解集為______

2)求分式不等式的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AD是△ABC的中線,E,F分別是ADAD延長線上的點,且DE=DF,連結BFCE.下列說法①△BDF≌△CDE;②△ABD和△ACD面積相等;③BFCE;④CE=BF.其中正確的有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們定義:如圖1,在中,把AB繞點A順時針旋轉得到,把AC繞點A逆時針旋轉得到,連接時,我們稱的“旋補三角形”, 上的中線AD叫做的“旋補中線”,點A叫做“旋補中心”.

特例感知:

在圖2,圖3中,的“旋補三角形”,AD的“旋補中線”.

如圖2,當為等邊三角形時,ADBC的數量關系為______BC;

如圖3,當,時,則AD長為______

猜想論證:

在圖1中,當為任意三角形時,猜想ADBC的數量關系,并給予證明.

拓展應用

如圖4,在四邊形ABCD,,,,在四邊形內部是否存在點P,使的“旋補三角形”?若存在,給予證明,并求的“旋補中線”長;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案