【題目】已知一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過A(3,18)和B(﹣2,8)兩點.
(1)求一次函數(shù)的解析式;
(2)若一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象只有一個交點,求交點坐標(biāo).
【答案】(1)一次函數(shù)的解析式為y=2x+12;(2)(﹣3,6).
【解析】
(1)直接把(3,18),(﹣2,8)代入一次函數(shù)y=kx+b中可得關(guān)于k、b的方程組,再解方程組可得k、b的值,進而求出一次函數(shù)的解析式;
(2)聯(lián)立一次函數(shù)解析式和反比例函數(shù)解析式可得2x2+12x﹣m=0,再根據(jù)題意得到△=0時,兩函數(shù)圖像只有一個交點,解方程即可得到結(jié)論.
解:(1)把(3,18),(﹣2,8)代入一次函數(shù)y=kx+b(k≠0),得
,
解得,
∴一次函數(shù)的解析式為y=2x+12;
(2)∵一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象只有一個交點,
∴只有一組解,
即2x2+12x﹣m=0有兩個相等的實數(shù)根,
∴△=122﹣4×2×(﹣m)=0,
∴m=-18.
把m=-18代入求得該方程的解為:x=-3,
把x=-3代入y=2x+12得:y=6,
即所求的交點坐標(biāo)為(-3,6).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點在直線上,過點作軸于點,作等腰直角三角形 (與原點重合),再以為腰作等腰直角三角形,以為腰作等腰直角三角形,…按照這樣的規(guī)律進行下去,那么的坐標(biāo)為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于,兩點,過點的直線與拋物線交于點,其中點的坐標(biāo)是,點的坐標(biāo)是,拋物線的頂點為點.
(1)求拋物線和直線的解析式.
(2)若點是拋物線上位于直線上方的一個動點,求的面積的最大值及此時點的坐標(biāo).
(3)若拋物線的對稱軸與直線相交于點,點為直線上的任意一點,過點作交拋物線于點,以,,,為頂點的四邊形能否為平行四邊形?若能,求出點的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的與軸交于點,與軸交于點,
(1)求該拋物線的解析式及頂點的坐標(biāo);
(2)若是線段上一動點,過作軸的平行線交拋物線于點,交于點,設(shè)時,的面積為.求關(guān)于的函數(shù)關(guān)系式;若有最大值,請求出的最大值,若沒有,請說明理由;
(3)若是軸上一個動點,過作射線交拋物線于點,隨著點的運動,在軸上是否存在這樣的點,使以 、、、為頂點的四邊形為平行四邊形?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知D是Rt△ABC斜邊AB的中點,∠ACB=90°,∠ABC=30°,過點D作Rt△DEF使∠DEF=90°,∠DFE=30°,連接CE并延長CE到P,使EP=CE,連接BE,FP,BP,設(shè)BC與DE交于M,PB與EF交于N.
(1)如圖1,當(dāng)D,B,F共線時,求證:
①EB=EP;
②∠EFP=30°;
(2)如圖2,當(dāng)D,B,F不共線時,連接BF,求證:∠BFD+∠EFP=30°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某海域有A、B、C三艘船正在捕魚作業(yè),C船突然出現(xiàn)故障,向A、B兩船發(fā)出緊急求救信號,此時B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏東33°方向,同時又位于B船的北偏東78°方向.
(1)求∠ABC的度數(shù);
(2)A船以每小時30海里的速度前去救援,問多長時間能到出事地點.(結(jié)果精確到0.01小時).
(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在菱形ABCD中,∠ABC=60°,P、Q是對角線BD上的兩個動點,點P從點D出發(fā)沿BD方向以1cm/s的速度向點B運動,運動終點為B;點Q從點B出發(fā)沿著BD的方向以2cm/s的速度向點D運動,運動終點為D.兩點同時出發(fā),設(shè)運動時間為x(s),以A、Q、C、P為頂點的圖形面積為y(cm2),y與x的函數(shù)圖像如圖②所示,根據(jù)圖像回答下列問題:
(1)BD= ,a= ;
(2)當(dāng)x為何值時,以A、Q、C、P為頂點的圖形面積為4cm2?
(3)在整個運動的過程中,若△AQP為直角三角形,請直接寫出符合條件的所有x的值:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩直線l1,l2分別經(jīng)過點A(1,0),點B(﹣3,0),并且當(dāng)兩直線同時相交于y正半軸的點C時,恰好有l1⊥l2,經(jīng)過點A、B、C的拋物線的對稱軸與直線l2交于點K,如圖所示.
(1)求點C的坐標(biāo),并求出拋物線的函數(shù)解析式;
(2)拋物線的對稱軸被直線l1,拋物線,直線l2和x軸依次截得三條線段,問這三條線段有何數(shù)量關(guān)系?請說明理由;
(3)當(dāng)直線l2繞點C旋轉(zhuǎn)時,與拋物線的另一個交點為M,請找出使△MCK為等腰三角形的點M,簡述理由,并寫出點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com