【題目】如圖,△ABC的面積為S,作△ABC邊中線AC1,取AB的中點(diǎn)A1,連接A1C1得到第一個(gè)三角形△A1BC1,作△A1BC1中線A1C2,取A1B的中點(diǎn)A2,連接A1C2得到第二個(gè)三角形△A2BC2………,重復(fù)這樣的操作,則第2019個(gè)三角形△A2019BC2019的面積是_________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將幾個(gè)小正方形與小長(zhǎng)方形拼成一個(gè)邊長(zhǎng)為(a+b+c)的正方形.
(1)若用不同的方法計(jì)算這個(gè)邊長(zhǎng)為(a+b+c)的正方形面積,就可以得到一個(gè)的等式,這個(gè)等式可以為 ;
(2)請(qǐng)利用(1)中的等式解答下列問(wèn)題:
①若三個(gè)實(shí)數(shù)a,b,c滿足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
②若三個(gè)實(shí)數(shù)x,y,z滿足2x×4y÷8z=32,x2+4y2+9z2=45,求2xy﹣3xz﹣6yz的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=3,BC=6.求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等圓⊙O1 和⊙O2 相交于A,B兩點(diǎn),⊙O2 經(jīng)過(guò)⊙O1 的圓心O1,兩圓的連心線交⊙O1于點(diǎn)M,交AB于點(diǎn)N,連接BM,已知AB=2.
求證:(1)BM是⊙O2的切線;
(2)求弧AM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀)如圖1,等邊△ABC中,P是AC邊上一點(diǎn),Q是CB延長(zhǎng)線上一點(diǎn),若AP=BQ.則過(guò)P作PF∥BC交AB于F,可證△APF是等邊三角形,再證△PDF≌QDB可得D是FB的中點(diǎn).請(qǐng)寫(xiě)出證明過(guò)程.
(運(yùn)用)如圖2,△ABC是邊長(zhǎng)為6的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A,C不重合),Q是CB延長(zhǎng)線上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過(guò)P作PE⊥AB于E,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時(shí),求AP的長(zhǎng);
(2)在運(yùn)動(dòng)過(guò)程中線段ED的長(zhǎng)是否發(fā)生變化?如果不變,直接寫(xiě)出線段ED的長(zhǎng);如果發(fā)生改變,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC,△DEC均為直角三角形,B,C,E三點(diǎn)在一條直線上,過(guò)D作DM⊥AC于M.
(1)如圖1,若△ABC≌△DEC,且AB=2BC.
①過(guò)B作BN⊥AC于N,則線段AN,BN,MN之間的數(shù)量關(guān)系為: ;(直接寫(xiě)出答案)
②連接ME,求的值;
(2)如圖2,若AB=CE=DE,DM=2,MC=1,求ME的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC 中,AB=CB,∠ABC=90°,F 為 AB 延長(zhǎng)線上一點(diǎn),點(diǎn) E 在 BC 上,且 AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=25,求∠BFC 度數(shù).
(3)若∠CAE=15°,BF=3.求AE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=∠C=90°,∠DAB與∠ADC的平分線相交于BC邊上的M點(diǎn).有下列結(jié)論:①∠AMD=90°;②M為BC的中點(diǎn);③AB+CD=AD;④S△ADM=S梯形ABCD;⑤M到AD的距離等于BC的一半.其中正確的結(jié)論有____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com