【題目】如圖,△ABC的面積為S,作△ABC邊中線AC1,取AB的中點(diǎn)A1,連接A1C1得到第一個(gè)三角形△A1BC1,作△A1BC1中線A1C2,取A1B的中點(diǎn)A2,連接A1C2得到第二個(gè)三角形△A2BC2………,重復(fù)這樣的操作,則第2019個(gè)三角形△A2019BC2019的面積是_________.

【答案】

【解析】

根據(jù)題意可得:SABC的面積是SSACC1的面積是(高不變,底邊減半,面積減半,以下同理),SA1BC1的面積是, SA2BC2的面積是SA3BC3的面積是……根據(jù)此規(guī)律進(jìn)一步求解即可.

根據(jù)三角形高不變,底邊減半,面積減半的原理,

SABC的面積是S,

SACC1的面積是,

SA1BC1的面積是;

SA2BC2的面積是

SA3BC3的面積是;

根據(jù)此規(guī)律,∴SA2019BC2019的面積是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將幾個(gè)小正方形與小長(zhǎng)方形拼成一個(gè)邊長(zhǎng)為(a+b+c)的正方形.

1)若用不同的方法計(jì)算這個(gè)邊長(zhǎng)為(a+b+c)的正方形面積,就可以得到一個(gè)的等式,這個(gè)等式可以為   ;

2)請(qǐng)利用(1)中的等式解答下列問(wèn)題:

①若三個(gè)實(shí)數(shù)ab,c滿足a+b+c11ab+bc+ac38,求a2+b2+c2的值;

②若三個(gè)實(shí)數(shù)xy,z滿足2x×4y÷8z32x2+4y2+9z245,求2xy3xz6yz的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,AE平分∠BADBC于點(diǎn)E,且∠ADC=60°,AB=3,BC=6.求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等圓⊙O1 和⊙O2 相交于A,B兩點(diǎn),⊙O2 經(jīng)過(guò)⊙O1 的圓心O1,兩圓的連心線交⊙O1于點(diǎn)M,交AB于點(diǎn)N,連接BM,已知AB=2.

求證:(1)BM是⊙O2的切線;

(2)求弧AM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀)如圖1,等邊△ABC中,PAC邊上一點(diǎn),QCB延長(zhǎng)線上一點(diǎn),若APBQ.則過(guò)PPFBCABF,可證△APF是等邊三角形,再證△PDFQDB可得DFB的中點(diǎn).請(qǐng)寫(xiě)出證明過(guò)程.

(運(yùn)用)如圖2,△ABC是邊長(zhǎng)為6的等邊三角形,PAC邊上一動(dòng)點(diǎn),由AC運(yùn)動(dòng)(與AC不重合),QCB延長(zhǎng)線上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由BCB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過(guò)PPEABE,連接PQABD

1)當(dāng)∠BQD30°時(shí),求AP的長(zhǎng);

2)在運(yùn)動(dòng)過(guò)程中線段ED的長(zhǎng)是否發(fā)生變化?如果不變,直接寫(xiě)出線段ED的長(zhǎng);如果發(fā)生改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,∠C=30°,DABAA,BC=6cm,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC,△DEC均為直角三角形,B,C,E三點(diǎn)在一條直線上,過(guò)DDM⊥ACM.

(1)如圖1,若△ABC≌△DEC,且AB=2BC.

過(guò)BBN⊥ACN,則線段AN,BN,MN之間的數(shù)量關(guān)系為:   ;(直接寫(xiě)出答案)

連接ME,求的值;

(2)如圖2,若AB=CE=DE,DM=2,MC=1,求ME的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC ,AB=CB,ABC=90°,F AB 延長(zhǎng)線上一點(diǎn),點(diǎn) E BC , AE=CF.

1)求證:△ABE≌△CBF;

2)若∠CAE=25,求∠BFC 度數(shù).

3)若∠CAE=15°,BF=3.AE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=∠C90°,∠DAB與∠ADC的平分線相交于BC邊上的M點(diǎn).有下列結(jié)論:AMD90°;MBC的中點(diǎn);AB+CDAD;SADMS梯形ABCD;MAD的距離等于BC的一半.其中正確的結(jié)論有____

查看答案和解析>>

同步練習(xí)冊(cè)答案