【題目】某自行車廠一周計(jì)劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計(jì)劃量相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負(fù)):

1)根據(jù)記錄可知前三天共生產(chǎn)______輛;

2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)______輛;

3)該廠實(shí)行每周計(jì)件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務(wù),則超過部分每輛另獎(jiǎng)15元;少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?請(qǐng)說明理由.

4)若將上面第(3)問中實(shí)行每周計(jì)件工資制改為實(shí)行每日計(jì)件工資制,其他條件不變,在此方式下該廠工人這一周按日計(jì)件工資與按周計(jì)件的工資哪一個(gè)更多?請(qǐng)說明理由.

【答案】1597;(228;(384525元;(484525元;這一周按日計(jì)件工資與按周計(jì)件的工資一樣多

【解析】

1)先求出計(jì)劃3天的產(chǎn)量,再根據(jù)前三天的產(chǎn)量增減記錄,求和即可;(2)根據(jù)超產(chǎn)最多一天和減產(chǎn)最多的一天數(shù)量計(jì)算即可;(3)先求出一周的增減量,根據(jù)數(shù)量乘以每輛的工資,可得基本工資,根據(jù)超產(chǎn)的數(shù)量乘以超產(chǎn)的獎(jiǎng)金,可得獎(jiǎng)金,根據(jù)有理數(shù)的加法,可得答案;(4)分別求出每天的工資,再求和,與按周計(jì)件的工資比較即可得答案.

1200×3+4-2-5=597(輛),

故答案為:597

2)∵產(chǎn)量最多一天超產(chǎn)17輛,最少一天減產(chǎn)11輛,

∴產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)17--11=28(),

故答案為:28

3+4+-2+-5+13+-11+17+-9=7()

(1400+7)×60+7×15=84525(),

答:周計(jì)件工資制,該廠工人這一周的工資總額是84525.

4)每天的工資額分別為:

周一:(200+4×60+4×15=12300(),

周二:(200-2×60-2×15=11850(),

周三:(200-5×60-5×15=11625 (),

周四:(200+13×60+13×15=12975(),

周五:(200-11×60-11×15=11175(),

周六:(200+17×60+17×15=13275(),

周日:(200-9×60-9×15=11325().

12300+11850+11625+12975+11175+13275+11325=84525().

∴該廠工人這一周按日計(jì)件工資與按周計(jì)件的工資一樣多.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CEDB,BEDC.

(1)求證:四邊形DBEC是菱形;

(2)若AD=3,DF=1,求四邊形DBEC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把菱形沿折疊,落在邊上的處,若,則的大小為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合).以AD為邊作正方形ADEF,連接CF

1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),求證:①BD⊥CF②CF=BC﹣CD

2)如圖2,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),其它條件不變,請(qǐng)直接寫出CF、BC、CD三條線段之間的關(guān)系;

3)如圖3,當(dāng)點(diǎn)D在線段BC的反向延長線上時(shí),且點(diǎn)A、F分別在直線BC的兩側(cè),其它條件不變:請(qǐng)直接寫出CF、BCCD三條線段之間的關(guān)系.若連接正方形對(duì)角線AEDF,交點(diǎn)為O,連接OC,探究△AOC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,CD=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連結(jié)AG、CF

1)求證:①△ABG≌△AFG; GC的長;

2)求△FGC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,點(diǎn)C的坐標(biāo)為.

1)以點(diǎn)C為旋轉(zhuǎn)中心,將旋轉(zhuǎn)后得到,請(qǐng)畫出;

2)平移,使點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)為,請(qǐng)畫出;

3)若將繞點(diǎn)P旋轉(zhuǎn)可得到,則點(diǎn)P的坐標(biāo)為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊長方形鋼板,工人師傅想把它分成面積相等的兩部分,請(qǐng)你在圖中畫出作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

118-(-13+(-27)-15 2)(-23+|-16|-|-7|-(-35

3 4

5 6

查看答案和解析>>

同步練習(xí)冊(cè)答案