【題目】如圖,五邊形內(nèi)接于,相切于點(diǎn),交延長線于點(diǎn)

1)若,求證:;

2)若,求的長.

【答案】1)見解析;(2.

【解析】

1)由圓心角、弧、弦之間的關(guān)系得出,由圓周角定理得出∠ADE=DBC,證明△ADE≌△DBC,即可得出結(jié)論;

2)連接CO并延長交ABG,作OHABH,則∠OHG=OHB=90°,由切線的性質(zhì)得出∠FCG=90°,得出△CFG、△OGH是等腰直角三角形,得出CF=CG,OG=OH,由等邊三角形的性質(zhì)得出∠OBH=30°,由直角三角形的性質(zhì)得出OH=OB=1,OG=,即可得出答案.

1)證明:∵,

,

,

中,,

,

;

2)解:連接并延長交,作,如圖所示:

,

相切于點(diǎn),

,

,

是等腰直角三角形,

,

,

是等邊三角形,

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的點(diǎn)和點(diǎn).過點(diǎn)軸的垂線,垂足為點(diǎn),的面積為4

1)分別求出的值;

2)結(jié)合圖象直接寫出的解集;

3)在軸上取點(diǎn),使取得最大值時(shí),求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,∠A=60°,點(diǎn)P和點(diǎn)Q分別從點(diǎn)B和點(diǎn)C出發(fā),沿射線BC向右運(yùn)動(dòng)并且始終保持BP=CQ,過點(diǎn)QQHBD,垂足為H,連接PH,設(shè)點(diǎn)P運(yùn)動(dòng)的距離為x0x2),△BPH的面積為s,則能反映sx之間的函數(shù)關(guān)系的圖象大致為 ( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形,E中點(diǎn),P為對(duì)角線上一點(diǎn),則的最小值等于( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,上一點(diǎn),經(jīng)過點(diǎn),與相交于點(diǎn)E,與交于點(diǎn),連接.

(I).如圖,若,求的長.

(II)如圖,平分,交于點(diǎn),經(jīng)過點(diǎn).

①求證:的切線;

②若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形ABCD的頂點(diǎn)Bx軸的正半軸上,點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點(diǎn)C,則k的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是王阿姨晚飯后步行的路程s(單位:m)與時(shí)間t(單位:min)的函數(shù)圖象,其中曲線段AB是以B為頂點(diǎn)的拋物線一部分.下列說法不正確的是( )

A.25min~50min,王阿姨步行的路程為800m

B.線段CD的函數(shù)解析式為

C.5min~20min,王阿姨步行速度由慢到快

D.曲線段AB的函數(shù)解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要在一塊長52m,寬48m的矩形綠地上,修建同樣寬的兩條互相垂直的甬路.下面分別是小亮和小穎的設(shè)計(jì)方案.

1)求小亮設(shè)計(jì)方案中甬路的寬度x;

2)求小穎設(shè)計(jì)方案中四塊綠地的總面積(友情提示:小穎設(shè)計(jì)方案中的與小亮設(shè)計(jì)方案中的取值相同)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD的對(duì)角線AC上取一點(diǎn)E.使得,連接BE并延長BEF,使BFCD相交于點(diǎn)H,若,有下列結(jié)論:①;②;③;④.則其中正確的結(jié)論有( )

A. ①②③B. ①②③④C. ①②④D. ①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案