【題目】如圖,在△ABC中,AB=AC.

(1)如圖1,若OAB的中點(diǎn),以O為圓心,OB為半徑作⊙OBC于點(diǎn)D,過(guò)DDEAC,垂足為E.

①試說(shuō)明:BD=CD;

②判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由.

(2)如圖2,若點(diǎn)O沿OB向點(diǎn)B移動(dòng),以O為圓心,以OB為半徑作⊙OAC相切于點(diǎn)F,與AB相交于點(diǎn)G,與BC相交于點(diǎn)D,DEAC,垂足為E,已知⊙O的半徑長(zhǎng)為4,CE=2,求切線AF的長(zhǎng).

【答案】(1)①證明見(jiàn)解析;②直線DE與⊙O相切,理由見(jiàn)解析;(2)AF=3.

【解析】

(1)①連接AD,已知AB是⊙O的直徑,根據(jù)直徑所對(duì)的圓周角是直角即可得∠ADB=90°,即ADBC;再由等腰三角形三線合一的性質(zhì)即可證得結(jié)論;(2)直線DE與⊙O相切,連接OD,已知AB=AC、OB=OD,根據(jù)等腰三角形的性質(zhì)可得∠ODB=B=C,即可判定ODBC,DEAC可得DEOD,由此即可判定DE與⊙O相切;(2)根據(jù)已知條件易證四邊形ODEF是矩形,即可得OD=EF=4;設(shè)AF=x,則AB=AC=x+6,AO =x+2,RtAOF中,利用勾股定理列出方程(x+2)2=x2+42,解方程求得x的值,即可求得AF的長(zhǎng).

(1)①連接AD,

AB為⊙O的直徑,

∴∠ADB=90°,即ADBC,

AB=AC,ADBC,

BD=CD;

②直線DE與⊙O相切,

理由:連接OD,

AB=AC,OB=OD,

∴∠ODB=B=C,

ODBC,

DEAC,

DEOD,

DE與⊙O相切;

(2)(1)同理得,DE與⊙O相切,

連接OF,

EF與⊙O相切,DEAC,

∴∠ODE=OFE=EDF=90°,即四邊形ODEF是矩形,

OD=EF=4,

設(shè)AF=x,則AB=AC=x+6,AO=x+6﹣4=x+2,

RtAOF中,

(x+2)2=x2+42

解得,x=3,

AF=3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=mx2+(3–2m)x+m–2(m≠0)與x軸有兩個(gè)不同的交點(diǎn).

(1)求m的取值范圍;

(2)判斷點(diǎn)P(1,1)是否在拋物線上;

(3)當(dāng)m=1時(shí),求拋物線的頂點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角標(biāo)系xOy中,以O為位似中心,將邊長(zhǎng)為8的等邊三角形OABn次位似變換,經(jīng)第一次變換后得到等邊三角形OA1B1,其邊長(zhǎng)OA1縮小為OA,經(jīng)第二次變換后得到等邊三角形OA2B2,其邊長(zhǎng)OA2縮小為OA1,經(jīng)第三次變換后得到等邊三角形OA3B3,其邊長(zhǎng)OA3縮小為OA2,…按此規(guī)律,經(jīng)第n次變換后,所得等邊出角形OAnBn.的頂點(diǎn)An的坐標(biāo)為(,0),則n的值是( 。

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,BAC=90°,直角∠EPF的頂點(diǎn)PBC中點(diǎn),PE、PF分別交AB、AC于點(diǎn)E、F.給出以下四個(gè)結(jié)論:

AECF;EPF是等腰直角三角形;③S四邊形AEPFSABC;

EFAP.上述結(jié)論正確的有_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過(guò)原點(diǎn)及點(diǎn),,且圖象與x軸的另一交點(diǎn)到原點(diǎn)的距離為1,則該二次函數(shù)解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是甲、乙兩種機(jī)器人根據(jù)電腦程序工作時(shí)各自工作量y關(guān)于工作時(shí)間x的函數(shù)圖像,線段OA表示甲機(jī)器人的工作量(噸)關(guān)于時(shí)間x(時(shí))的函數(shù)圖像,線段BC表示乙機(jī)器人的工作量(噸)關(guān)于時(shí)間x(時(shí))的函數(shù)圖像.根據(jù)圖像信息回答下列填空題.

1)甲種機(jī)器人比乙種機(jī)器人早開(kāi)始工作 小時(shí);甲種機(jī)器人每小時(shí)的工作量是 噸;

2)直線BC的表達(dá)式為 ;當(dāng)乙種機(jī)器人工作5小時(shí)后,它完成的工作量是 噸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,外一點(diǎn),過(guò)點(diǎn)的兩條切線,切點(diǎn)分別為.若,則點(diǎn)叫做的切角點(diǎn).

(1)如圖②,的半徑是1,點(diǎn)O到直線的距離為2.若點(diǎn)的切角點(diǎn),且點(diǎn)在直線上,請(qǐng)用尺規(guī)作出點(diǎn);(保留作圖痕跡,不寫作法)

(2)如圖③,在中,,,的內(nèi)切圓.若點(diǎn)的切角點(diǎn),且點(diǎn)的邊上,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件50元.當(dāng)售價(jià)為每件70元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問(wèn)題:

(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫出yx的函數(shù)關(guān)系式,并求出自變量x的取值范圍;

(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案