【題目】兩會期間,記者隨機(jī)抽取參會的部分代表,對他們某天發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:
發(fā)言次數(shù)n | |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |
(1)求得樣本容量為 ,并補(bǔ)全直方圖;
(2)如果會議期間組織1700名代表參會,請估計(jì)在這一天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)已知A組發(fā)表提議的代表中恰有1為女士,E組發(fā)表提議的代表中只有2位男士,現(xiàn)從A組與E組中分別抽一位代表寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位代表恰好都是男士的概率.
【答案】(1)50,補(bǔ)圖見解析;(2)306人;(3).
【解析】
(1)根據(jù)統(tǒng)計(jì)圖可以求得本次調(diào)查的人數(shù)以及發(fā)言為和的人數(shù),從而可以將直方圖補(bǔ)充完整;
(2)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以估計(jì)在這一天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)根據(jù)題意可以求得發(fā)言次數(shù)為和的人數(shù),從而可以畫出樹狀圖,得到所抽的兩位代表恰好都是男士的概率.
解:(1)由統(tǒng)計(jì)圖可得,
本次調(diào)查的人數(shù)為:10÷20%=50,
發(fā)言次數(shù)為C的人數(shù)為:50×30%=15,
發(fā)言次數(shù)為F的人數(shù)為:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=50×10%=5,
故答案為:50,
補(bǔ)全的直方圖如圖所示,
(2)1700×(8%+10%)=306,
即會議期間組織1700名代表參會,在這一天里發(fā)言次數(shù)不少于12次的人數(shù)是306;
(3)由統(tǒng)計(jì)圖可知,
發(fā)言次數(shù)為A的人數(shù)有:50×6%=3,
發(fā)言次數(shù)為E的人數(shù)有:50×8%=4,
由題意可得,
故所抽的兩位代表恰好都是男士的概率是,
即所抽的兩位代表恰好都是男士的概率是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,點(diǎn)D與點(diǎn)B在AC同側(cè),∠DAC>∠BAC,且DA=DC,過點(diǎn)B作BE∥DA交DC于點(diǎn)E,M為AB的中點(diǎn),連接MD,ME.
(1)如圖1,當(dāng)∠ADC=90°時,線段MD與ME的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)∠ADC=60°時,試探究線段MD與ME的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,當(dāng)∠ADC=α?xí)r,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的20個小球,其中紅球6個,黑球14個
(1)先從袋子中取出x(x>3)個紅球后,再從袋子中隨機(jī)摸出1個球,將“摸出黑球”,記為事件A.請完成下列表格.
事件A | 必然事件 | 隨機(jī)事件 |
x的值 |
(2)先從袋子中取出m個紅球,再放入2m個一樣的黑球并搖勻,隨機(jī)摸出1個球是黑球的概率是,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=﹣x2+2mx+3m2與x軸相交于點(diǎn)B、C(點(diǎn)B在點(diǎn)C的左側(cè)),與y軸相交于點(diǎn)A,點(diǎn)D為拋物線的頂點(diǎn),拋物線的對稱軸交x軸于點(diǎn)E.
(1)如圖1,當(dāng)AO+BC=7時,求拋物線的解析式;
(2)如圖2,點(diǎn)F是拋物線的對稱軸右側(cè)一點(diǎn),連接BF、CF、DF,過點(diǎn)F作FH∥x軸交DE于點(diǎn)H,當(dāng)∠BFC=∠DFB+∠BFH=90°時,求點(diǎn)H的縱坐標(biāo);
(3)如圖3,在(1)的條件下,點(diǎn)P是拋物線上一點(diǎn),點(diǎn)P、點(diǎn)A關(guān)于直線DE對稱,點(diǎn)Q在線段AP上,過點(diǎn)P作PR⊥AP,連接BQ、QR,滿足QB平分∠AQR,tan∠QRP=,點(diǎn)K在拋物線的對稱軸上且在x軸下方,當(dāng)CK=BQ時,求線段DK的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關(guān)系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是( )
A. 賽跑中,兔子共休息了50分鐘
B. 烏龜在這次比賽中的平均速度是0.1米/分鐘
C. 兔子比烏龜早到達(dá)終點(diǎn)10分鐘
D. 烏龜追上兔子用了20分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A,B在x軸上,且關(guān)于y軸對稱,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)C,反比例函數(shù)y=(x<0)的圖象分別與AD,CD交于點(diǎn)E,F(xiàn),若S△BEF=7,k1+3k2=0,則k1等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中.拋物線y=﹣x2+4x+3與y軸交于點(diǎn)A,拋物線的對稱軸與x軸交于點(diǎn)B,連接AB,將△OAB繞著點(diǎn)B順時針旋轉(zhuǎn)得到△O'A'B.
(1)用配方法求拋物線的對稱軸并直接寫出A,B兩點(diǎn)的坐標(biāo);
(2)如圖1,當(dāng)點(diǎn)A'第一次落在拋物線上時,∠O'BO=n∠OAB,請直接寫出n的值;
(3)如圖2,當(dāng)△OAB繞著點(diǎn)B順時針旋轉(zhuǎn)60°,直線A'O'交x軸于點(diǎn)M,求△A'MB的面積;
(4)在旋轉(zhuǎn)過程中,連接OO',當(dāng)∠O'OB=∠OAB時.直線A'O'的函數(shù)表達(dá)式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD 是菱形ABCD 的對角線,∠A=30°.
(1)請用尺規(guī)作圖法,作AB 的垂直平分線EF,垂足為E,交AD 于F;(不要 求寫作法,保留作圖痕跡)
(2)在(1)的條件下,連接BF,求∠DBF 的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com