【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,取斜邊AB的中點E,易得△BCE是等邊三角形,從而得到“直角三角形中,30°角所對的直角邊等于斜邊的一半”利用這個結論解決問題:
如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,若動點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動.過點P作PD⊥AC于點D(點P不與點A.B重合),作∠DPQ=60°,邊PQ交射線DC于點Q.設點P的運動時間為t秒.
(1)用含t的代數(shù)式表示線段DC的長;
(2)當線段PQ的垂直平分線經(jīng)過△ABC一邊中點時,直接寫出t的值.
【答案】(1);(2)t的值為或或
【解析】
(1)在Rt△ABC中,利用結論可得,可由勾股定理求出AC,在Rt△ADP中,由題意AP=2t,PD=t,用勾股定理可表示出AD,再用DC=AC-AD即可;
(2)分三種情況討論,①當PQ的垂直平分線與PQ交于點G,且經(jīng)過AB的中點F時,易證△PAD≌QPD,△PFG≌PAD,可得PF=AP=2t,而F為AB的中點,利用AP+PF=AB可求t;
②當PQ的垂直平分線經(jīng)過AC的中點M時,可在Rt△MGQ中,求出MQ,然后利用AM+MQ=2AD可求出t;
③當PQ的垂直平分線經(jīng)過BC的中點N,與AB的延長線交于H點時,
易證△PHG≌△PAD,則PH=AP=2t,然后利用等角對等邊得到BH=BN=1,再由AH=AB+BN可求出t.
(1)在Rt△ABC中,利用結論可得,
∴
在Rt△ADP中,由題意AP=2t,PD=t,
∴,
∴
∵點P不與點A.B重合,∴
故.
(2)①當PQ的垂直平分線與PQ交于點G,且經(jīng)過AB的中點F時,如圖1,
在△APD和△QPD中,
∴
∴PA=PQ,∠PQD=∠A=30°,AD=QD=
∵GF是PQ的中垂線,∴,
在△APD和△FPG中,
∴
∴PA=PF=2t
∵F為AB中點,∴AF=PA+PF=AB,
即2t+2t=2,解得t=
②當PQ的垂直平分線經(jīng)過AC的中點M時,如圖2,
由①可知PG=QG=PQ=t,
在Rt△MGQ中,設MG=x,∵∠MQG=30°,∴MQ=2x
由勾股定理得
即,解得或(舍去)
∴,
∵M為AC的中點,∴AM=AC=,
AM+MQ=2AD,即+=,解得t=
③當PQ的垂直平分線經(jīng)過BC的中點N,與AB的延長線交于H點時,如圖3,
在Rt△PFG中,,
∵∠ABC=∠H+∠BNH=60°,∴∠BNH=∠H=30°,∴BH=BN==1
同①可證△PHG≌△PAD,∴PH=PA=2t,
由AB+BH=PA+PH=2PA得4+1=4t,解得t=
綜上,當線段PQ的垂直平分線經(jīng)過△ABC一邊中點時,t的值為或或.
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有一項資助貧困生的公益活動由你來主持,每位參與者需交贊助費5元,活動規(guī)則如下:如圖是兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,每個轉(zhuǎn)盤被分成6個相等的扇形,參與者轉(zhuǎn)動這兩個轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針各自指向一個數(shù)字,(若指針在分格線上,則重轉(zhuǎn)一次,直到指針指向某一數(shù)字為止),若指針最后所指的數(shù)字之和為12,則獲得一等獎,獎金20元;數(shù)字之和為9,則獲得二等獎,獎金10元;數(shù)字之和為7,則獲得三等獎,獎金為5元;其余均不得獎;此次活動所集到的贊助費除支付獲獎人員的獎金外,其余全部用于資助貧困生的學習和生活;
(1)分別求出此次活動中獲得一等獎、二等獎、三等獎的概率;
(2)若此次活動有2000人參加,活動結束后至少有多少贊助費用于資助貧困生?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x與雙曲線y= (k>0,x>0)交于點A,將直線y=x向上平移4個單位長度后,與y軸交于點C,與雙曲線y= (k>0,x>0)交于點B,若OA=3BC,則k的值為( )
A. 3 B. 6 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】著名的恩施大峽谷(A)和世界級自然保護區(qū)星斗山(B)位于筆直的滬渝高速公路X同側(cè),AB=50km,A、B到直線X的距離分別為10km和40km,要在滬渝高速公路旁修建一服務區(qū)P,向A、B兩景區(qū)運送游客.小民設計了兩種方案,圖1是方案一的示意圖(AP與直線X垂直,垂足為P),P到A、B的距離之和S1=PA+PB,圖2是方案二的示意圖(點A關于直線X的對稱點是A',連接BA′交直線X于點P),P到A、B的距離之和S2=PA+PB
(1)S1=_____km.S2=_____km.
(2)PA+PB的最小值為_____km.
(3)擬建的恩施到張家界高速公路與滬渝高速公路垂直,建立如圖3所示的直角坐標系,B到直線的距為30km,請你在X旁和P旁各修建一服務區(qū)P、Q,使P、A、B、Q組成的四邊形的周長最小,(用尺畫出點P和點Q的位置)這個最小值為_____km.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知函數(shù)y=x與反比例函數(shù)y= (x>0)的圖象交于點A.將y=x的圖象向下移6個單位后與雙曲線y=交于點B,與x軸交于點C.
(1)求點C的坐標;
(2)若=2,求反比例函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于點E,點F在AC上,且BD=DF.
(1)求證:CF=EB;
(2)請你判斷AE、AF與BE之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點D,E,F(xiàn)分別是△ABC邊AB,BC,AC的中點,連接DE,EF,要使四邊形ADEF是正方形,還需增加條件:_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF,結論:①EM=FN;②AF
∥EB;③∠FAN=∠EAM;④△ACN≌△ABM其中正確的有 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某人在大樓30米高(即PH=30米)的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i為1∶,點P,H,B,C,A在同一個平面上,點H,B,C在同一條直線上,且PH⊥HC.則A,B兩點間的距離是( )
A. 15米 B. 20米 C. 20米 D. 10米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com