【題目】已知一個模型的三視圖如圖,其邊長如圖所示(單位:cm).制作這個模型的木料密度為150 kg/m3,則這個模型的質(zhì)量是多少kg?如果油漆這個模型,每千克油漆可以漆4 m2,需要油漆多少kg(質(zhì)量=密度×體積)

【答案】這個模型的質(zhì)量是948 kg;需要油漆5.9 kg.

【解析】

先計算模型的體積,再根據(jù)質(zhì)量=體積×密度,求質(zhì)量,再根據(jù)需要先求模型的表面積,再求所需油漆的重量.

模型的體積=300×200×10050×80×806 320 000 cm36.32 m3,

模型的質(zhì)量=6.32×150948 kg

模型的表面積=2(100×200100×300200×300)2(50×8080×8050×80)2×80×80236 000cm223.6 m2,

需要油漆:23.6÷45.9 kg.

答:這個模型的質(zhì)量是948 kg;需要油漆5.9 kg.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是兩個全等的等腰直角三角形,,的頂點E的斜邊BC的中點重合繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q

如圖,當(dāng)點Q在線段AC上,且時,的形狀有什么關(guān)系,請證明;

如圖,當(dāng)點Q在線段CA的延長線上時,有什么關(guān)系,說明理由;

當(dāng)時,求P、Q兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,熱氣球的探測器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個長方體形的木柜放在墻角處(與墻面和地面均沒有縫隙),有一只螞蟻從柜角A處沿著木柜表面爬到柜角C1處.

(1)請你在備用圖中畫出螞蟻能夠最快到達(dá)目的地的可能路徑;

(2)當(dāng)AB4,BC4,CC15時,求螞蟻爬過的最短路徑的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yk1xb的圖象與反比例函數(shù)y (x<0)的圖象相交于點A(-1,2)、點B(-4,n).

(1)求此一次函數(shù)和反比例函數(shù)的表達(dá)式;

(2)AOB的面積;

(3)x軸上存在一點P,使PAB的周長最小,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線過原點且與x軸交于點A,頂點的縱坐標(biāo)是

求拋物線的函數(shù)表達(dá)式及點A坐標(biāo);

根據(jù)圖象回答:當(dāng)x為何值時拋物線位于x軸上方?

直接寫出所求拋物線先向左平移3個單位,再向上平移5個單位所得到拋物線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD與正方形AEFG的邊AB、AEABAE)在一條直線上,正方形AEFG以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過程中,兩個正方形只有點A重合,其它頂點均不重合,連接BE、DG.(1)當(dāng)正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時,求證:BEDG;(2)如圖3,如果α45°,AB2AE4,求點GBE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,

如圖1,點DBC上,求證:,

將圖1中的繞點C按逆時針方向旋轉(zhuǎn)到圖2所示的位置,旋轉(zhuǎn)角為為銳角,線段DE,AE,BD的中點分別為PM,N,連接PM,PN

請直接寫出線段PM,PN之間的關(guān)系,不需證明;

,求

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某數(shù)學(xué)活動小組選定測量小河對岸大樹BC的高度,他們在斜坡AF上的D處測得大樹頂端B的仰角是30°,在地面上A處測得大樹頂端B的仰角是45°.若坡角∠FAE30°,AD6m,求大樹的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):1.73)

查看答案和解析>>

同步練習(xí)冊答案