【題目】在證明勾股定理時,可以將4個全等的直角三角形和一個小正方形拼成的一個大正方形(如圖所示).如果小正方形的面積是25,大正方形的面積為49,直角三角形中較小的銳角為α,那么tanα的值是____

【答案】

【解析】

首先求出小正方形的邊長和大正方形的邊長然后再求出BDDE的長,進(jìn)而可得tanα的值.

如圖,

∵小正方形的面積是25

EB=5,

∵△ABC≌△DEB,

AB=DE,

∵大正方形的面積為49

AD=7,

DB+DE=7

設(shè)BD=x,

DE=7-x

RtBDE中:x2+7-x2=52,

解得:x1=4x2=3,

當(dāng)x=4時,7-x=3,

當(dāng)x=3時,7-x=4,

α為較小的銳角,

BD=4,DE=3,

tanα=,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形,點(diǎn)是線段上一動點(diǎn),連接,將沿直線折疊,點(diǎn)落到處,連接,,當(dāng)為等腰三角形時,的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20143月,某海域發(fā)生航班失聯(lián)事件,我海事救援部門用高頻海洋探測儀進(jìn)行海上搜救,分別在A、B兩個探測點(diǎn)探測到C處是信號發(fā)射點(diǎn),已知A、B兩點(diǎn)相距400m,探測線與海平面的夾角分別是,若CD的長是點(diǎn)C到海平面的最短距離.

BDAB有什么數(shù)量關(guān)系,試說明理由;

求信號發(fā)射點(diǎn)的深度結(jié)果精確到1m,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,點(diǎn)DAB邊的點(diǎn),過D作DEBC點(diǎn)E,點(diǎn)P是邊BC上的一個動點(diǎn),APCD相交于點(diǎn)Q.當(dāng)APPD的值最小時,AQPQ之間的數(shù)量關(guān)系

A.AQ= PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過點(diǎn)DDFAC,垂足為F

1)求證:DF為⊙O的切線;

2)若 ,∠CDF22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面直角坐標(biāo)系,拋物線軸交于點(diǎn)A(-2,0)和點(diǎn)B(4,0)

1)求這條拋物線的表達(dá)式和對稱軸;

2)點(diǎn)C在線段OB上,過點(diǎn)CCD軸,垂足為點(diǎn)C,交拋物線與點(diǎn)D,EBD中點(diǎn),聯(lián)結(jié)CE并延長,與軸交于點(diǎn)F

①當(dāng)D恰好是拋物線的頂點(diǎn)時,求點(diǎn)F的坐標(biāo);

②聯(lián)結(jié)BF,當(dāng)DBC的面積是BCF面積的時,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明研究一函數(shù)的性質(zhì),下表是該函數(shù)的幾組對應(yīng)值:

在平面直角坐標(biāo)系中,描出以上表格中的各點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)圖像

根據(jù)所畫函數(shù)圖像,寫出該函數(shù)的一條性質(zhì): .

根據(jù)圖像直接寫出該函數(shù)的解析式及自變量的取值范圍: ;

若一次函數(shù)與該函數(shù)圖像有三個交點(diǎn),則的范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的坐標(biāo)為,動點(diǎn)從點(diǎn)出發(fā),沿軸以每秒個單位的速度向上移動,且過點(diǎn)的直線也隨之移動,如果點(diǎn)關(guān)于的對稱點(diǎn)落在坐標(biāo)軸上,沒點(diǎn)的移動時間為,那么的值可以是___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD,∠EAF45°

1)如圖,當(dāng)點(diǎn)E、F分別在邊BCCD上,連接EF,求證:EFBE+DF;

童威同學(xué)是這樣思考的,請你和他一起完成如下解答:證明:將ADF繞點(diǎn)A順時針旋轉(zhuǎn)90°,得ABG,所以ADF≌△ABG

2)如圖,點(diǎn)M、N分別在邊AB、CD上,且BNDM.當(dāng)點(diǎn)E、F分別在BM、DN上,連接EF,探究三條線段EF、BEDF之間滿足的數(shù)量關(guān)系,并證明你的結(jié)論.

3)如圖,當(dāng)點(diǎn)E、F分別在對角線BD、邊CD上.若FC2,則BE的長為   

查看答案和解析>>

同步練習(xí)冊答案