【題目】如圖,已知平面直角坐標(biāo)系,拋物線軸交于點(diǎn)A(-20)和點(diǎn)B(4,0)

1)求這條拋物線的表達(dá)式和對稱軸;

2)點(diǎn)C在線段OB上,過點(diǎn)CCD軸,垂足為點(diǎn)C,交拋物線與點(diǎn)DEBD中點(diǎn),聯(lián)結(jié)CE并延長,與軸交于點(diǎn)F

①當(dāng)D恰好是拋物線的頂點(diǎn)時(shí),求點(diǎn)F的坐標(biāo);

②聯(lián)結(jié)BF,當(dāng)DBC的面積是BCF面積的時(shí),求點(diǎn)C的坐標(biāo).

【答案】(1) ,x=1;(2)①F的坐標(biāo)是(0,);②C坐標(biāo)是.

【解析】

1)用待定系數(shù)法求解;

2)①求出頂點(diǎn)坐標(biāo),得出DC、OCBC長度,在RtDCBRtOFC中,利用三角函數(shù)求出OF值即可;

②通過面積比找到DCOF比值,證明DCB∽△FOC,借助比例式求解OB,從而得到OC長.

1)由題意得,拋物線經(jīng)過點(diǎn)A(2,0)和點(diǎn)B(40),

代入得 解得

因此,這條拋物線的表達(dá)式是.

它的對稱軸是直線.

2)①由拋物線的表達(dá)式,得頂點(diǎn)D的坐標(biāo)是(1,.

.

D是拋物線頂點(diǎn),CD軸,EBD中點(diǎn),∴. .

,∴.

Rt中,

Rt中,,

,.∴點(diǎn)F的坐標(biāo)是(0,).

②∵,,

∵△DBC的面積是BCF面積的,

由①得,又,

∴△∽△.∴

OB=4,∴,∴.即點(diǎn)C坐標(biāo)是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過,兩點(diǎn),且與軸交于另一點(diǎn).

1)求直線及拋物線的解析式;

2)點(diǎn)是拋物線上一動點(diǎn),當(dāng)點(diǎn)在直線下方的拋物線上運(yùn)動時(shí),過點(diǎn)軸交于點(diǎn),過點(diǎn)軸交于點(diǎn),求的最大值;

3)在(2)的條件下,當(dāng)的值最大時(shí),將繞點(diǎn)旋轉(zhuǎn),當(dāng)點(diǎn)落在軸上時(shí),直接寫出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)為每個(gè)班級配備了一種可以加熱的飲水機(jī),該飲水機(jī)的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機(jī)自動停止加熱,水溫開始下降,水溫y(℃)與通電時(shí)間xmin)成反比例關(guān)系,直至水溫降至室溫,飲水機(jī)再次自動加熱,重復(fù)上述過程.設(shè)某天水溫和室溫為20℃,接通電源后,水溫y(℃)與通電時(shí)間xmin)的關(guān)系如下圖所示,回答下列問題:

1)當(dāng)0≤x≤8時(shí),求yx之間的函數(shù)關(guān)系式;

2)求出圖中a的值;

3)某天早上720,李老師將放滿水后的飲水機(jī)電源打開,若他想在800上課前能喝到不超過40℃的溫開水,問:他應(yīng)在什么時(shí)間段內(nèi)接水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為推動時(shí)刻聽黨話 永遠(yuǎn)跟黨走校園主題教育活動,計(jì)劃開展四項(xiàng)活動:A:黨史演講比賽,B:黨史手抄報(bào)比賽,C:黨史知識競賽,D:紅色歌詠比賽.校團(tuán)委對學(xué)生最喜歡的一項(xiàng)活動進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2兩幅不完整的統(tǒng)計(jì)圖.請結(jié)合圖中信息解答下列問題:

1)本次共調(diào)查了   名學(xué)生;

2)將圖1的統(tǒng)計(jì)圖補(bǔ)充完整;

3)已知在被調(diào)查的最喜歡黨史知識競賽項(xiàng)目的4個(gè)學(xué)生中只有1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生參加該項(xiàng)目比賽,請用畫樹狀圖或列表的方法,求出恰好抽到一名男生一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在證明勾股定理時(shí),可以將4個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示).如果小正方形的面積是25,大正方形的面積為49,直角三角形中較小的銳角為α,那么tanα的值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一批貨物準(zhǔn)備運(yùn)往某地,有甲、乙、丙三輛卡車可雇用.已知甲、乙、丙三輛車每次運(yùn)貨量不變,且甲、乙兩車單獨(dú)運(yùn)完這批貨物分別用次;甲、丙兩車合運(yùn)相同次數(shù),運(yùn)完這批貨物,甲車共運(yùn)噸;乙、丙兩車合運(yùn)相同次數(shù),運(yùn)完這批貨物乙車共運(yùn)噸,現(xiàn)甲、乙、丙合運(yùn)相同次數(shù)把這批貨物運(yùn)完,貨主應(yīng)付甲車主的運(yùn)費(fèi)為___________ .(按每噸運(yùn)費(fèi)元計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)邊上,的延長線交于點(diǎn),下列結(jié)論錯(cuò)誤的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解全區(qū)5000名初中畢業(yè)生的體重情況,隨機(jī)抽測了200名學(xué)生的體重,頻率分布如圖所示(每小組數(shù)據(jù)可含最小值,不含最大值),其中從左至右前四個(gè)小長方形的高依次為0.02、0.03、0.04、0.05,由此可估計(jì)全區(qū)初中畢業(yè)生的體重不小于60千克的學(xué)生人數(shù)約為___人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與拋物線相交于點(diǎn)和點(diǎn)兩點(diǎn).

1)求拋物線的函數(shù)表達(dá)式;

2)若點(diǎn)是位于直線上方拋物線上的一動點(diǎn),當(dāng)的面積最大時(shí),求此時(shí)的面積及點(diǎn)的坐標(biāo);

3)在軸上是否存在點(diǎn),使是等腰三角形?若存在,直接寫出點(diǎn)的坐標(biāo)(不用說理);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案