【題目】已知,拋物線(xiàn)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且AB=4,頂點(diǎn)P(3,-4)

1)求拋物線(xiàn)的解析式;

2)若點(diǎn)M在拋物線(xiàn)上,且MAB的面積為24,求M點(diǎn)的坐標(biāo).

【答案】1y=x2-6x+5;(2M1(-1,12),M2(712)

【解析】

1)先求出拋物線(xiàn)的對(duì)稱(chēng)軸,從而求出點(diǎn)A和點(diǎn)B的坐標(biāo),設(shè)拋物線(xiàn)的解析式為:y=a(x-3)2-4,將點(diǎn)B的坐標(biāo)代入即可求出結(jié)論;

2)設(shè)點(diǎn)M(mm2-6m+5),根據(jù)三角形的面積公式可得AB|m2-6m+5|=24,解一元二次方程即可求出結(jié)論.

解:(1)∵拋物線(xiàn)的頂點(diǎn)P(3,-4)

∴拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=3

又在x軸上所截得的線(xiàn)段AB的長(zhǎng)為4,

∴點(diǎn)A、B到對(duì)稱(chēng)軸的距離為2

∴點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(50)

設(shè)拋物線(xiàn)的解析式為:y=a(x-3)2-4

將點(diǎn)B(5,0)代入可得:0=a(5-3)2-4

解得a=1

故拋物線(xiàn)的解析式為:y=(x-3)2-4,即y=x2-6x+5

2)設(shè)點(diǎn)M(m,m2-6m+5),

SMAB=24,

AB|m2-6m+5|=24,即m2-6m+5=±12

m2-6m+5=12m2-6m+5=-12

m2-6m+5=12m2-6m-7=0

解得:x1=-1,x2=7,

M1(-1,12),M2(712);

m2-6m+5=-12m2-6m+17=0

=(-6)2-4×17=-320

∴方程無(wú)解,舍去.

綜上:M1(-1,12),M2(7,12)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一單位為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜邊在x軸上、斜邊長(zhǎng)分別為2,4,6,…的等腰直角三角形.若△A1A2A3的頂點(diǎn)坐標(biāo)分別為A12,0),A21,﹣1),A30,0),則依圖中所示規(guī)律,A2019的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的外接圓,AB為直徑,∠BAC的平分線(xiàn)交于點(diǎn)D,過(guò)點(diǎn)D作DEAC分別交AC、AB的延長(zhǎng)線(xiàn)于點(diǎn)E、F.

(1)求證:EF是的切線(xiàn);

(2)若AC=4,CE=2,求的長(zhǎng)度.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)經(jīng)過(guò),,與y軸交于點(diǎn)C,點(diǎn)P是拋物線(xiàn)上BC上方的一個(gè)動(dòng)點(diǎn).

1)求這條拋物線(xiàn)對(duì)應(yīng)的函數(shù)表達(dá)式:

2)當(dāng)PAC的面積時(shí),求點(diǎn)P的坐標(biāo);

3)若拋物線(xiàn)上有另一動(dòng)點(diǎn)Q,滿(mǎn)足BC平分,過(guò)點(diǎn)OPQ的平行線(xiàn)交拋物線(xiàn)于點(diǎn)D,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為2,一個(gè)銳角等于60°的菱形紙片,小芳同學(xué)將一個(gè)三角形紙片的一個(gè)頂點(diǎn)與該菱形頂點(diǎn)D重合,按順時(shí)針?lè)较蛐D(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長(zhǎng)線(xiàn))于點(diǎn)E、F,EDF=60°,當(dāng)CE=AF時(shí),如圖1小芳同學(xué)得出的結(jié)論是DE=DF

(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng)CE≠AF時(shí),如圖2小芳的結(jié)論是否成立?若成立,加以證明;若不成立,請(qǐng)說(shuō)明理由;

(2)再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn)E、F分別在CB、BA的延長(zhǎng)線(xiàn)上時(shí),如圖3請(qǐng)直接寫(xiě)出DE與DF的數(shù)量關(guān)系;

(3)連EF,若DEF的面積為y,CE=x,求y與x的關(guān)系式,并指出當(dāng)x為何值時(shí),y有最小值,最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC,將△ACB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△ACB′,則CB′的長(zhǎng)為( 。

A. +B. 1+C. 3D. +

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,拋物線(xiàn)的頂點(diǎn)為,經(jīng)過(guò)拋物線(xiàn)上的兩點(diǎn)的直線(xiàn)交拋物線(xiàn)的對(duì)稱(chēng)軸于點(diǎn)

1)求拋物線(xiàn)的解析式和直線(xiàn)的解析式.

2)在拋物線(xiàn)上兩點(diǎn)之間的部分(不包含兩點(diǎn)),是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

3)若點(diǎn)在拋物線(xiàn)上,點(diǎn)軸上,當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫(xiě)出滿(mǎn)足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,正方形ABCD的邊長(zhǎng)為4,取AB邊上的中點(diǎn)E,連接CE,過(guò)點(diǎn)BBFCE于點(diǎn)F,連接DF.過(guò)點(diǎn)AAHDF于點(diǎn)H,交CE于點(diǎn)M,交BC于點(diǎn)N,則MN=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解全校學(xué)生上學(xué)的交通方式,該校九年級(jí)(8)班的5名同學(xué)聯(lián)合設(shè)計(jì)了一份調(diào)查問(wèn)卷,對(duì)該校部分學(xué)生進(jìn)行了隨機(jī)調(diào)查.按A(騎自行車(chē))、B(乘公交車(chē))、C(步行)、D(乘私家車(chē))、E(其他方式)設(shè)置選項(xiàng),要求被調(diào)查同學(xué)從中單選.并將調(diào)查結(jié)果繪制成條形統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2,根據(jù)以上信息,解答下列問(wèn)題:

1)本次接受調(diào)查的總?cè)藬?shù)是 人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)在扇形統(tǒng)計(jì)圖中,步行的人數(shù)所占的百分比是 ,其他方式所在扇形的圓心角度數(shù)是

3)已知這5名同學(xué)中有2名女同學(xué),要從中選兩名同學(xué)匯報(bào)調(diào)查結(jié)果.請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法,求出恰好選出1名男生和1名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案