【題目】如圖,拋物線yax2+bx+cx軸分別于點(diǎn)A(﹣3,0),B1,0),交y軸正半軸于點(diǎn)D,拋物線頂點(diǎn)為C.下列結(jié)論

2ab0;

a+b+c0

③當(dāng)m≠1時(shí),abam2+bm

④當(dāng)ABC是等腰直角三角形時(shí),a;

⑤若D0,3),則拋物線的對稱軸直線x=﹣1上的動點(diǎn)PB、D兩點(diǎn)圍成的PBD周長最小值為3,其中,正確的個(gè)數(shù)為(  )

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

【答案】D

【解析】

A、B兩點(diǎn)坐標(biāo)代入拋物線的解析式并整理即可判斷①②;

根據(jù)拋物線的頂點(diǎn)和最值即可判斷③;

求出當(dāng)△ABC是等腰直角三角形時(shí)點(diǎn)C的坐標(biāo),進(jìn)而可求得此時(shí)a的值,于是可判斷④;

根據(jù)利用對稱性求線段和的最小值的方法(將軍飲馬問題)求解即可判斷⑤.

解:把A(﹣3,0),B1,0)代入yax2+bx+c得到,消去c得到2ab0,故①②正確;

∵拋物線的對稱軸是直線x=﹣1,開口向下,∴x=﹣1時(shí),y有最大值,最大值=ab+c,

m1,∴ab+cam2+bm+c,∴abam2+bm,故③正確;

當(dāng)△ABC是等腰直角三角形時(shí),C(﹣1,2),

可設(shè)拋物線的解析式為yax+12+2,把(10)代入解得a=﹣,故④正確,

如圖,連接AD交拋物線的對稱軸于P,連接PB,則此時(shí)△BDP的周長最小,最小值=PD+PB+BDPD+PA+BDAD+BD,

AD3,BD

∴△PBD周長最小值為3,故⑤正確.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,以AB為直徑作O,OBC的中點(diǎn)D,過點(diǎn)DDEAC,垂足為E.求證:

1DEO的切線;

2ABAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,點(diǎn)OAC上,以O為圓心,OC為半徑作⊙O,過點(diǎn)AADBOBO的延長線于點(diǎn)D.則下列結(jié)論中:①點(diǎn)A、B、C、D在同一個(gè)圓上;②∠ABC2CAD;③若∠BOC=∠BAD,則AB與⊙O相切,正確的結(jié)論是( 。

A.①②③B.①②C.②③D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,A,B兩點(diǎn)的縱坐標(biāo)分別為4,2,反比例函數(shù)yx0)的圖象經(jīng)過A,B兩點(diǎn),若菱形ABCD的面積為2,則k的值為(  )

A. 2B. 3C. 4D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動程序,開機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃停止加熱,水溫開始下降,此時(shí)水溫)與開機(jī)后用時(shí))成反比例關(guān)系,直至水溫降至30℃,飲水機(jī)關(guān)機(jī),飲水機(jī)關(guān)機(jī)后即刻自動開機(jī),重復(fù)上述自動程序.若在水溫為30℃時(shí)接通電源,水溫)與時(shí)間)的關(guān)系如圖所示:

1)分別寫出水溫上升和下降階段之間的函數(shù)關(guān)系式;

2)怡萱同學(xué)想喝高于50℃的水,請問她最多需要等待多長時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(綜合與實(shí)踐)如圖①,在正方形ABCD中,點(diǎn)E、F分別在射線CD、BC上,且BFCE,將線段FA繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得到線段FG,連接EG,試探究線段EGBF的數(shù)量關(guān)系和位置關(guān)系.

(觀察與猜想)任務(wù)一:智慧小組首先考慮點(diǎn)EF的特殊位置如圖②,當(dāng)點(diǎn)E與點(diǎn)D重合,點(diǎn)F與點(diǎn)C重合時(shí),易知:EGBF的數(shù)量關(guān)系是   ,EGBF的位置關(guān)系是   

(探究與證明)任務(wù)二:博學(xué)小組同學(xué)認(rèn)為EF不一定必須在特殊位置,他們分兩種情況,一種是點(diǎn)E、F分別在CD、BC邊上任意位置時(shí)(如圖③);一種是點(diǎn)E、FCDBC邊的延長線上的任意位置時(shí)(如圖④),線段EGBF的數(shù)量關(guān)系與位置關(guān)系仍然成立.請你選擇其中一種情況給出證明.

(拓展與延伸)創(chuàng)新小組同學(xué)認(rèn)為,若將正方形ABCD”改為矩形ABCD,且kk≠1,點(diǎn)E、F分別在射線CD、BC上任意位置時(shí),仍將線段FA繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°,并適當(dāng)延長得到線段FG,連接EG(如圖⑤),則當(dāng)線段BF、CEAF、FG滿足一個(gè)條件   時(shí),線段EGBF的數(shù)量關(guān)系與位置關(guān)系仍然成立.(請你在橫線上直接寫出這個(gè)條件,無需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請你利用直角坐標(biāo)平面上任意兩點(diǎn)(x1y1)、(x2y2)間的距離公式解答下列問題:

已知:反比例函數(shù)與正比例函數(shù)yx的圖象交于A、B兩點(diǎn)(A在第一象限),點(diǎn)F1(﹣2,﹣2)、F22,2)在直線yx上.設(shè)點(diǎn)Px0,y0)是反比例函數(shù)圖象上的任意一點(diǎn),記點(diǎn)PF1、F2兩點(diǎn)的距離之差d|PF1PF2|.試比較線段AB的長度與d的大小,并由此歸納出雙曲線的一個(gè)重要定義(用簡練的語言表述).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,對角線,交于點(diǎn). 中點(diǎn),連接于點(diǎn),且.

1)求的長;

2)若的面積為2,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的二次函數(shù)y2x2+bx+c.當(dāng)x1時(shí),y4;當(dāng)x=﹣2y=﹣5

1)求y關(guān)于x的二次函數(shù)的解析式;

2)在直角坐標(biāo)系中把(1)中的圖象拋物線平移到頂點(diǎn)與原點(diǎn)重合,應(yīng)該怎樣平移?

查看答案和解析>>

同步練習(xí)冊答案