【題目】20191218日,新版《北京市生活垃圾管理條例》正式發(fā)布,并將在202051日起正式實施,這標志著北京市生活垃圾分類將正式步入法制化、常態(tài)化、系統(tǒng)化軌道.目前,相關(guān)配套設(shè)施的建設(shè)已經(jīng)開啟.如圖,計劃在某小區(qū)道路l上建一個智能垃圾分類投放點O,使得道路l附近的兩棟住宅樓B到智能垃圾分類投放點O的距離相等.

1)請在圖中利用尺規(guī)作圖(保留作圖痕跡,不寫作法),確定點O的位置;

2)確定點O位置的依據(jù)為

【答案】1)詳見解析;(2)線段垂直平分線上的點與這條線段兩個端點的距離相等.

【解析】

1)根據(jù)線段垂直平分線上的點到線段兩個端點的距離相等,連接AB,作線段AB的垂直平分線,與l的交點即為O點的位置;

2)依據(jù)線段垂直平分線性質(zhì)定理即可作答.

解:(1)如下圖,點O為所求:

2)依據(jù)為:線段垂直平分線上的點與這條線段兩個端點的距離相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連接AP并延長APCDF點,連接CP并延長CPADQ點.給出以下結(jié)論:①四邊形AECF為平行四邊形;②∠PBA=APQ;③△FPC為等腰三角形;④△APB≌△EPC;其中正確結(jié)論的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天,某同學(xué)早上8點坐車從余姚圖書館出發(fā)去寧波大學(xué),汽車離開余姚圖書館的距離(千米)與所用時間(分)之間的函數(shù)關(guān)系如圖所示.已知汽車在途中停車加油一次,則下列描述不正確的是(

A.汽車在途中加油用了10分鐘

B.,則加滿油以后的速度為80千米/小時

C.若汽車加油后的速度是90千米/小時,則

D.該同學(xué)到達寧波大學(xué)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)曾有許多重要的成就,其中楊輝三角” (如圖)就是一例. 這個三角形給出了=1,23,4,5,6)的展開式(按的次數(shù)由大到小順序排列)的系數(shù)規(guī)律.例如,第三行的三個數(shù)1,2,1,恰好對應(yīng)展開式中各項的系數(shù);第五行的五個數(shù)1,4,6,41,恰好對應(yīng)著展開式中各項的系數(shù).

1展開式中的系數(shù)為________;

2展開式中各項系數(shù)的和為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程,解應(yīng)用題:

第二屆中國國際進口博覽會于2019115日至10日在上海國家會展中心舉行.與首屆相比,第二屆進博會的展覽面積更大,企業(yè)展設(shè)置科技生活、汽車、裝備等七個展區(qū),展覽面積由的270 000平方米增加到330 000平方米.參展企業(yè)比首屆多了約300家,參展企業(yè)平均展覽面積增加了12.8%,求首屆進博會企業(yè)平均展覽面積.

1)在解應(yīng)用題時,我們常借助表格、線段圖等分析題目中的數(shù)量關(guān)系.

設(shè)首屆進博會企業(yè)平均展覽面積為x平方米,把下表補充完整:

屆別

總面積(平方米)

參展企業(yè)數(shù)量

企業(yè)平均展覽面積(平方米)

270 000

x

第二屆

330 000

2)根據(jù)以上分析,列出方程(不解方程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)媒體報道,在第52屆國際速錄大賽中我國速錄選手獲得了7枚金牌、7枚銀牌和4枚銅牌,在國際舞臺上展示了指尖上的“中國速度”.看到這則新聞后,學(xué)生小明和小海很受鼓舞,決定利用業(yè)余時間練習(xí)打字.經(jīng)過一段時間的努力,他們的錄入速度有了明顯的提高.經(jīng)測試現(xiàn)在小明打140個字所用時間與小海打175個字所用時間相同,小明平均每分鐘比小海少打15個字.請求出小明平均每分鐘打字的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC右側(cè)作射線CP,∠ACP=0°<<60°),點A關(guān)于射線CP的對稱點為點D,BDCP于點E,連接AD,AE.

1)求∠DBC的大。ㄓ煤的代數(shù)式表示);

2)在0°<<60°)的變化過程中,∠AEB的大小是否發(fā)生變化?如果發(fā)生變化,請直接寫出變化的范圍;如果不發(fā)生變化,請直接寫出∠AEB的大;

3)用等式表示線段AE,BDCE之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.

(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?

(2)若單獨租用一臺車,租用哪臺車合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BC2AB4,點E,F分別是BC,AD的中點.

(1)求證:△ABE≌△CDF;

(2)當(dāng)四邊形AECF為菱形時,求出該菱形的面積.

查看答案和解析>>

同步練習(xí)冊答案