【題目】如圖,在△ABC中,∠ACB90°,ACBC2,將△ABCAC的中點D逆時針旋轉(zhuǎn)90°得到△ABC′,其中點B的運動路徑為,則圖中陰影部分的面積為( 。

A.πB.2C.D.

【答案】A

【解析】

先利用勾股定理求出DB′,AB′再根據(jù)S陰影=S扇形BDB-SDBC-SDBC,計算即可.

解:連接DBDB′,作DHA′B′△ABCAC的中點D逆時針旋轉(zhuǎn)90°得到△A'B′C',此時點A′在斜邊AB上,CA′⊥AB,

∵∠C′A′B′=45°,

∴DH=sin45°×AD=×1=,

BC=2CD=1,

DB

ACBC2,

AB=A′B′2,

BC=2=,

∴S1×2÷2×÷2π

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形沿對折,點落在處,點落在邊上的處,相交于點.若,則周長的大小為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售一種商品,經(jīng)市場調(diào)查發(fā)現(xiàn),該商品的周銷售量(件)是售價(元/件)的一次函數(shù).其售價、周銷售量、周銷售利潤(元)的三組對應(yīng)值如下表:

售價(元/件)

50

60

80

周銷售量(件)

100

80

40

周銷售利潤(元)

1000

1600

1600

注:周銷售利潤=周銷售量×(售價-進價)

1)求關(guān)于的函數(shù)解析式(不寫出自變量的取值范圍);

2)該商品進價是 /件;求售價是多少元/件時,周銷售利潤最大,最大利潤是多少元?

3)由于某種原因,該商品進價提高了/件(),物價部門規(guī)定該商品售價不得超過65/件.該商店在今后的銷售中,周銷售量與售價仍然滿足(1)中函數(shù)關(guān)系.若周銷售最大利潤是1400元,則的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“六一”期間,小張購述100只兩種型號的文具進行銷售,其中A種型號的文具進價為10元/只,售價為12元,B種型號的文具進價為151只,售價為23元/只.

1)小張如何進貨,使進貨款恰好為1300元?

2)如果購進A型文具的數(shù)量不少于B型文具數(shù)量的倍,且要使銷售文具所獲利潤不低于500元,則小張共有幾種不同的購買方案?哪一種購買方案使銷售文具所獲利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某校九年級學(xué)生為災(zāi)區(qū)捐款情況抽樣調(diào)查的條形圖和扇形統(tǒng)計圖.

1)求抽樣調(diào)查的人數(shù);

2)在扇形統(tǒng)計圖中,求該樣本中捐款15元的人數(shù)所占的圓心角度數(shù);

3)若該校九年級學(xué)生有1000人,據(jù)此樣本估計九年級捐款總數(shù)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:對于任意正實數(shù)a、b,∵≥0, ∴≥0,

,只有當ab時,等號成立.

結(jié)論:在ab均為正實數(shù))中,若ab為定值p,則a+b≥,只有當ab時,a+b有最小值

根據(jù)上述內(nèi)容,回答下列問題:

m0,只有當m 時,有最小值

思考驗證:如圖1,AB為半圓O的直徑,C為半圓上任意一點(與點A、B不重合),過點CCDAB,垂足為D,ADaDBb

試根據(jù)圖形驗證,并指出等號成立時的條件.

探索應(yīng)用:如圖2,已知A(3,0),B(0,-4),P為雙曲線x0)上的任意一點,過點PPCx軸于點C,PDy軸于點D.求四邊形ABCD面積的最小值,并說明此時四邊形ABCD的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形 OABC 為菱形,點 C 的坐標為(4,0),∠AOC = 60°,垂直于 x 軸的直線 l y 軸出發(fā),沿 x 軸正方向以每秒 1 個單位長度的速度運動,設(shè)直線 l 菱形 OABC 的兩邊分別交與點 M、N(點 M 在點 N 的上方).

1)求 A、B 兩點的坐標;

2)設(shè) OMN 的面積為 S,直線 l 運動時間為 t 秒(0 ≤t ≤6 ),試求 S t 的函數(shù)表達 式;

3)在題(2)的條件下,t 為何值時,S 的面積最大?最大面積是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在中,點的中點,連接并延長,交的延長線于點.

1)求證:.

2)連接,,當______時,四邊形是正方形.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于AC兩點,與直線yx1交于AB兩點,直線AB與拋物線的對稱軸交于點E

(1)求拋物線的解板式.

(2)P在直線AB上方的拋物線上運動,若△ABP的面積最大,求此時點P的坐標.

(3)在平面直角坐標系中,以點BE、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標.

查看答案和解析>>

同步練習(xí)冊答案