【題目】汽車由天津駛往相距120千米的北京,(千米)表示汽車離開天津的距離,(小時)表示汽車行駛的時間.如圖所示:

1)汽車用幾小時可到達北京?速度是多少?

2)汽車行駛1小時,離開天津有多遠?

3)當汽車距北京20千米時,汽車出發(fā)了多長時間?

【答案】14小時 ,30千米/時;(230千米;(3小時.

【解析】

(1)從圖中即可得出信息;

(2)設出一次函數(shù)代數(shù)解出即可;

(3)距北京20千米,即離天津100千米,將數(shù)代入一次函數(shù)即可.

解:(1)由圖象可知:汽車用4小時可以從天津到達北京,速度為v==30(千米/時);
(2)觀察圖象可知,s與t成正比例函數(shù)關系,設s=kt,
當t=4時,s=120,所以120=4k,解得k=30,
所以函數(shù)關系式為s=30t,
當t=1時,s=30×1=30(千米).

(3)當s=100是,t=100÷30=(小時)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明和小紅玩拋硬幣游戲,連續(xù)拋兩次.小明說:如果兩次都是正面,那么你贏;如果兩次是一正一反,則我贏.”小紅贏的概率是__________,據(jù)此判斷該游戲__________(填公平不公平”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在直線l上,ABCAB′C′關于直線l對稱,連接BB′分別交AC,AC′于點D′,連接CC′,下列結論不一定正確的是( 。

A.BAC=∠B′AC′B.CC′BB′C.BDB′D′D.ADDD′

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某批彩色彈力球的質量檢驗結果如下表:

抽取的彩色彈力球數(shù)n

500

1000

1500

2000

2500

優(yōu)等品頻數(shù)m

471

946

1426

1898

2370

優(yōu)等品頻率

0.942

0.946

0.951

0.949

0.948

(1)請在圖中完成這批彩色彈力球優(yōu)等品頻率的折線統(tǒng)計圖

(2)這批彩色彈力球優(yōu)等品概率的估計值大約是多少?(精確到0.01)

(3)從這批彩色彈力球中選擇5個黃球、13個黑球、22個紅球,它們除了顏色外都相同,將它們放入一個不透明的袋子中,求從袋子中摸出一個球是黃球的概率.

(4)現(xiàn)從第(3)問所說的袋子中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻,使從袋子中摸出一個黃球的概率為,求取出了多少個黑球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,分別以,為邊作等邊三角形和等邊三角形,連接,交于點,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】湖南師大附中組織集團校內七、八、九年級學生參加“12KM”作文比賽,該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.

(1)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應的圓心角是   度.八年級參賽作文篇數(shù)對應的百分比是   

(2)請補全條形統(tǒng)計圖.

(3)經(jīng)過評審,全集團校內有4篇作文榮獲特等獎,其中一篇來自九年級,學校準備從特等獎作文中任選兩篇刊登在校報上,請利用畫樹狀圖或列表的方法求出九年級特等獎作文被選登在校報上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,求作一點P,使P到∠A的兩邊的距離相等,且PAPB、下列確定P點的方法正確的是( 。

A.P為∠A、∠B兩角平分線的交點

B.PAC、AB兩邊上的高的交點

C.P為∠A的角平分線與AB的垂直平分線的交點

D.PAC、AB兩邊的垂直平分線的交點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小昊遇到這樣一個問題:如圖1,在ABC中,∠ACB=90°,BEAC邊上的中線,點DBC邊上,CD:BD=1:2,ADBE相交于點P,求的值.

小昊發(fā)現(xiàn),過點AAFBC,交BE的延長線于點F,通過構造AEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).請回答的值為 

參考小昊思考問題的方法,解決問題:

如圖 3,在ABC中,∠ACB=90°,點DBC的延長線上,ADAC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3 .

(1)求的值;

(2)若CD=2,則BP=__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形 ABCD 中,E BC 邊中點.

)已知:如圖,若 AE 平分BAD,AED=90°,點 F AD 上一點,AF=AB.求證:(1ABEAFE;(2AD=AB+CD

)已知:如圖,若 AE 平分BAD,DE 平分ADC,AED=120°,點 FG 均為 AD上的點,AF=ABGD=CD.求證:(1GEF 為等邊三角形;(2AD=AB+ BC+CD.

查看答案和解析>>

同步練習冊答案