兩個全等的直角三角形ABC和DEF重疊在一起,其中∠A=60°,AC=1.固定△ABC不動,將△DEF進行如下操作:
(1)如圖1,△DEF沿線段AB向右平移(即D點在線段AB內移動) ,連結DC、CF、FB,四邊形CDBF的形狀在不斷的變化,但它的面積不變化,四邊形CDBF面積為 _______;
(2)如圖2,當D點移到AB的中點時,請你猜想四邊形CDBF的形狀,并說明理由.
(3)如圖3,△DEF的D點固定在AB的中點,然后繞D點按順時針方向旋轉△DEF,使DF落在AB邊上,此時F點恰好與B點重合,連結AE,請你求出sin∠AED的值.
(1) (2)菱形(3)
解析:解:(1) ………………………2分
(2)菱形 ………………………3分
∵CD∥BF,F(xiàn)C∥BD,
∴四邊形CDBF是平行四邊形 ……………………… 4分
∵DF∥AC,∠ACB=90O,
∴CB⊥DF …………………………… 5分
∴四邊形CDBF是菱形 …………………………… 6分
(判斷四邊形CDBF是平行四邊形,并證明正確,記2分)
(3)解法一:過D點作DH⊥AE于H,
則S△ADE= …………………………… 7分
又S△ADE= ……………………9分
∴在Rt△DHE中,sin∠AED= ……………………10分
解法二:∵△ADH∽△ABE …………………… 7分
∴ 即: ………………… 8分
∴ ……………………………… 9分
∴sin∠AED= ……………………………… 10分
(1)根據(jù)平移的性質,可得AD=BE,CF∥BD.所以三角形ACD的面積等于三角形BEF的面積,則梯形的面積就等于直角三角形ABC的面積;
(2)根據(jù)直角三角形一邊上的中線等于斜邊的一半,以及平移的性質可以證明該四邊形的四條邊相等,則該四邊形是菱形.
(3)根據(jù)三角函數(shù)的概念解答
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com