【題目】在平面直角坐標(biāo)系中,直線與軸,軸分別交于點(diǎn),,點(diǎn)的坐標(biāo)為,點(diǎn)是線段上的一點(diǎn),以為腰在第二象限內(nèi)作等腰直角,.
(1)請(qǐng)直接寫(xiě)出點(diǎn),的坐標(biāo):( , ),( , );
(2)設(shè)點(diǎn)的坐標(biāo)為,連接并延長(zhǎng)交軸于點(diǎn),求點(diǎn)的坐標(biāo).
【答案】(1),;.
【解析】
(1)先令y=0求出x的值,再令x=0求出y的值即可得出A、B兩點(diǎn)的坐標(biāo);
(2)過(guò)作軸于,根據(jù)AAS定理得出△DFM≌△EDN.故,從而得出a、b的關(guān)系式,再根據(jù)點(diǎn)F在直線可得出結(jié)論;
解:(1)當(dāng)y=0時(shí),x=-2,則A的坐標(biāo)(-2,0),
當(dāng)x=0時(shí),y=2,則B的坐標(biāo)(0,2),
,
(2)過(guò)作軸于,過(guò)作軸于,過(guò)作軸于,
∵∠FDM+∠EDN=90°,∠FDM+∠DFM=90°,
∴∠DFM=∠EDN,
在△DFM與△EDN中,
∴,
∵,
∴,
,
∴,
∴,
又∵在上,
∴,
∴,
∴,,
使解析式為,
代入得:
∴,
當(dāng)y=0時(shí),x=2;
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1且為實(shí)數(shù)),其中正確的個(gè)數(shù)是( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點(diǎn)D,DE⊥AB交AB的延長(zhǎng)線于點(diǎn)E,DF⊥AC于點(diǎn)F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和爸爸周末到濕地公園進(jìn)行鍛煉,兩人同時(shí)從家出發(fā),勻速騎共享單車(chē)到達(dá)公園入口,然后一同勻速步行到達(dá)驛站,到達(dá)驛站后小明的爸爸立即又騎共享單車(chē)按照來(lái)時(shí)騎行速度原路返回,在公園入口處改為步行,并按來(lái)時(shí)步行速度原路回家,小明到達(dá)驛站后逗留了10分鐘之后騎車(chē)回家,爸爸在鍛煉過(guò)程中離出發(fā)地的路程與出發(fā)的時(shí)間的函數(shù)關(guān)系如圖.
(1)圖中m=_____,n=_____;(直接寫(xiě)出結(jié)果)
(2)小明若要在爸爸到家之前趕上,問(wèn)小明回家騎行速度至少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某經(jīng)銷(xiāo)商銷(xiāo)售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10元/千克,已知銷(xiāo)售價(jià)不低于成本價(jià),且物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷(xiāo)售價(jià)不高于18元/千克,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量y(千克)與銷(xiāo)售價(jià)x(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)該經(jīng)銷(xiāo)商想要每天獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售價(jià)應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)E,F分別是□ABCD的邊BC,AD上的中點(diǎn),且∠BAC=90°.
(1)求證:四邊形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量河對(duì)岸l1上兩棵古樹(shù)A、B之間的距離,某數(shù)學(xué)興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點(diǎn),測(cè)得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為( 。
A. 50m B. 25m C. (50﹣)m D. (50﹣25)m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點(diǎn)C在上,另兩個(gè)頂點(diǎn)A、B分別在、上,則的值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=36°時(shí),求∠DEF的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com