【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為∣AB∣.
當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn).
如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;
當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),
如圖2,點(diǎn)A、B都在原點(diǎn)的右邊
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;
如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;
如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,
∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;
回答下列問題:
(1)數(shù)軸上表示2和5的兩點(diǎn)之間的距離是_________,數(shù)軸上表示-2和-5的兩點(diǎn)之間的距離是_________,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是_______;
(2)數(shù)軸上表示x和-1的兩點(diǎn)A和B之間的距離是___________,如果∣AB∣=2,那么x為____________;
(3)當(dāng)代數(shù)式∣x+1∣+∣x-2∣取最小值時(shí),相應(yīng)的x的取值范圍是_____________.
【答案】 3 3 4 |-1-x|或者|x+1| -3或1 -1≤x≤2
【解析】試題分析:(1)由題意得:若點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為∣AB|,則∣AB|=∣a-b|.根據(jù)這個(gè)結(jié)論計(jì)算兩個(gè)點(diǎn)之間距離;(2)首先表示出A、B之間距離為|x+1|,令|x+1|=2,求出x即可;(3)要求∣x+1∣+∣x-2∣最小值,即要在數(shù)軸上找一點(diǎn),使得這個(gè)點(diǎn)到-1和2這兩個(gè)點(diǎn)的距離之和最小,所以當(dāng)這個(gè)點(diǎn)位于-1和2之間(包括兩個(gè)端點(diǎn))時(shí),∣x+1∣+∣x-2∣取得最小值.
試題解析:
解:由題意得:若點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為∣AB|,則∣AB|=∣a-b|.
(1)數(shù)軸上表示2和5兩點(diǎn)之間的距離是3;數(shù)軸上表示-2和-5的兩點(diǎn)A和B之間的距離是3;數(shù)軸上表示1和-3的兩點(diǎn)A和B之間的距離是4.
(2)數(shù)軸上表示x和-1的兩點(diǎn)A和B之間的距離是|-1-x|或者|x+1|,如果|AB|=2,那么 x為-3或1.
(3)當(dāng)代數(shù)式|x+1|+|x-2|取最小值時(shí),相應(yīng)的x的取值范圍是-1≤x≤2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是DC的中點(diǎn),連接AE,并延長交BC的延長線于點(diǎn)F.
(1)求證:△ADE和△CEF的面積相等
(2)若AB=2AD,試說明AF恰好是∠BAD的平分線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請說出以下幾個(gè)點(diǎn)在坐標(biāo)軸的哪部分上.(2, 0)、(0, 4)、(1, 0)、(0,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式中能用平方差公式是( )
A.(x+y)(y+x)
B.(x+y)(y﹣x)
C.(x+y)(﹣y﹣x)
D.(﹣x+y)(y﹣x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別于BC,AC相交于點(diǎn)D,E,BD=CD,過點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多項(xiàng)式15a3b2(a+b)c+10a2b(a+b)的公因式是( )
A.5a3b2(a+b)
B.a2b(a+b)
C.5ab(a+b)
D.5a2b(a+b)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com