【題目】如圖,在△ABC中,以AB為直徑的⊙O分別于BC,AC相交于點(diǎn)D,E,BD=CD,過(guò)點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求長(zhǎng)(結(jié)果保留π).
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)連接OD,由切線的性質(zhì)即可得出∠ODF=90°,再由BD=CD,OA=OB可得出OD是△ABC的中位線,根據(jù)三角形中位線的性質(zhì)即可得出,根據(jù)平行線的性質(zhì)即可得出∠CFD=∠ODF=90°,從而證出DF⊥AC;
(2)由∠CDF=30°以及∠ODF=90°即可算出∠ODB=60°,再結(jié)合OB=OD可得出△OBD是等邊三角形,根據(jù)弧長(zhǎng)公式即可得出結(jié)論.
試題解析:(1)證明:連接OD,如圖所示.
∵DF是⊙O的切線,D為切點(diǎn),
∴OD⊥DF,
∴∠ODF=90°
∵BD=CD,OA=OB,
∴OD是△ABC的中位線,
∴OD∥AC,
∴∠CFD=∠ODF=90°,
∴DF⊥AC.
(2)解:∵∠CDF=30°,
由(1)得∠ODF=90°,
∴∠ODB=180°-∠CDF-∠ODF=60°
∵OB=OD,
∴△OBD是等邊三角形,
∴∠BOD=60°,
∴BD弧的長(zhǎng)=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在小方格紙上按下面的方式涂色:
① ② ③ ④
(1)填表:
圖形編號(hào) | ① | ② | ③ | ④ | ⑤ | ⑥ |
涂色的小方格數(shù) |
(2)像這樣,第 n 個(gè)圖形要涂色的小方格數(shù)是__________,第100個(gè)圖形要涂色的小方格數(shù)是____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為∣AB∣.
當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn).
如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;
當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),
如圖2,點(diǎn)A、B都在原點(diǎn)的右邊
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;
如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;
如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,
∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;
回答下列問(wèn)題:
(1)數(shù)軸上表示2和5的兩點(diǎn)之間的距離是_________,數(shù)軸上表示-2和-5的兩點(diǎn)之間的距離是_________,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是_______;
(2)數(shù)軸上表示x和-1的兩點(diǎn)A和B之間的距離是___________,如果∣AB∣=2,那么x為____________;
(3)當(dāng)代數(shù)式∣x+1∣+∣x-2∣取最小值時(shí),相應(yīng)的x的取值范圍是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若方程(|m|-1)x2+(m-1)x+3=0是關(guān)于x的一元一次方程,則m的值是( )
A. ±1 B. 1 C. -1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若多項(xiàng)式2x2-3x+6的值為8,則多項(xiàng)式9-4x2+6x的值是( )
A. 13 B. 11 C. 5 D. -7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從熱氣球C處測(cè)得地面A、B兩點(diǎn)的俯角分別為45°、30°,如果此時(shí)熱氣球C處離地面的高度CD為100米,且點(diǎn)A、D、B在同一直線上,求AB兩點(diǎn)間的距離(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過(guò)點(diǎn)D作對(duì)角線BD的垂線交BA的延長(zhǎng)線于點(diǎn)E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com