【題目】已知:如圖,在ABC中,AB=AC,點D、E分別在邊BC、DC上,AB2 =BE · DC ,DE:EC=3:1 ,F是邊AC上的一點,DFAE交于點G

1)找出圖中與ACD相似的三角形,并說明理由;

2)當DF平分ADC時,求DG:DF的值;

3)如圖,當∠BAC=90°,且DFAE時,求DG:DF的值.

【答案】(1)ABE、ADC,理由見解析;(2;(3

【解析】

1)根據(jù)相似三角形的判定方法,即可找出與ACD相似的三角形;

(2)由相似三角形的性質(zhì),得,由DE=3CE,先求出AD的長度,然后計算得到;

3)由等腰直角三角形的性質(zhì),得到∠DAG=∠ADF=45°,然后證明△ADE∽△DFA,得到,求出DF的長度,即可得到.

解:(1)與△ACD相似的三角形有:△ABE、△ADC,理由如下:

∵AB2 =BE · DC ,

∵AB=AC

∴∠B=∠C,

∴△ABE∽△DCA

∴∠AED=∠DAC

∵∠AED=∠C+∠EAC,∠DAC=∠DAE+∠EAC

∴∠DAE=∠C

∴△ADE∽△CDA

2)∵ADECDA,DF平分ADC,

,

CE=a,則DE=3CE=3aCD=4a,

,解得(負值已舍)

;

3∵∠BAC=90°,AB=AC

∴∠B=∠C=45° ,

∴∠DAE=∠C=45°,

∵DG⊥AE,

∴∠DAG=∠ADF=45°,

∴AG=DG=,

,

∵∠AED=∠DAC

∴△ADE∽△DFA,

,

,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形中,,,點、分別在邊、上,將四邊形沿直線翻折,點、的對稱點分別記為、.

1)當時,若點恰好落在線段上,求的長;

2)設,若翻折后存在點落在線段上,則的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,反比例函數(shù)yb0)與二次函數(shù)yax2+bxa0)的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同學張豐用一張長18cm、寬12cm矩形紙片折出一個菱形,他沿矩形的對角線AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四邊形AECF(如圖).

1)證明:四邊形AECF是菱形;

2)求菱形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一菱形紙片ABCD,∠A60°,將該菱形紙片折疊,使點A恰好與CD的中點E重合,折痕為FG,點F、G分別在邊AB、AD上,聯(lián)結(jié)EF,那么cos∠EFB的值為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1896年,挪威生理學家古德貝發(fā)現(xiàn),每個人有一條腿邁出的步子比另一條腿邁出的步子長的特點,這就導致每個人在蒙上眼睛行走時,雖然主觀上沿某一方向直線前進,但實際上走出的是一個大圓圈!這就是有趣的“瞎轉(zhuǎn)圈”現(xiàn)象.經(jīng)研究,某人蒙上眼睛走出的大圓圈的半徑米是其兩腿邁出的步長之差厘米的反比例函數(shù),其圖象如圖所示.

請根據(jù)圖象中的信息解決下列問題:

1)求之間的函數(shù)表達式;

2)當某人兩腿邁出的步長之差為厘米時,他蒙上眼睛走出的大圓圈的半徑為______米;

3)若某人蒙上眼睛走出的大圓圈的半徑不小于米,則其兩腿邁出的步長之差最多是多少厘米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解我市中學生參加“科普知識”競賽成績的情況,隨機抽查了部分參賽學生的成績,整理并制作出如下的統(tǒng)計表和統(tǒng)計圖,如圖所示,請根據(jù)圖表信息解答下列問題:

組別

分數(shù)段(分)

頻數(shù)

A

60x70

30

B

70x80

90

C

80x90

m

D

90x100

60

1)本次調(diào)查的總?cè)藬?shù)為   人.

2)補全頻數(shù)分布直方圖;

3)若A組學生的平均分是65分,B組學生的平均分是75分,C組學生的平均分是85分,D出學生的平均分是95分,請你估計參加本次測試的同學們平均成績是多少分?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市要選拔一名教師參加省級評優(yōu)課比賽:經(jīng)筆試、面試,結(jié)果小潘和小丁并列第一,評委會決定通過摸球來確定人選.規(guī)則如下:在不透明的布袋里裝有除顏色之外均相同的2個紅球和1個藍球,小潘先取出一個球,記住顏色后放回,然后小丁再取出一個球.若兩次取出的球都是紅球,則小潘勝出;若兩次取出的球是一紅一藍,則小丁勝出.你認為這個規(guī)則對雙方公平嗎?請用列表法或畫樹狀圖的方法進行分析.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,.以為直徑的交于點,與交于點,點在邊的延長線上,且.

1)試說明的切線;

2)過點,垂足為.若,,求的半徑;

3)連接,設的面積為的面積為,若,求的長.

查看答案和解析>>

同步練習冊答案