【題目】設(shè)一元二次方程x2﹣3x﹣1=0的兩根分別是x1 , x2 , 則x1+x2(x22﹣3x2)=

【答案】3
【解析】解:∵一元二次方程x2﹣3x﹣1=0的兩根分別是x1 , x2 , ∴x12﹣3x1﹣1=0,x22﹣3x2﹣1=0,x1+x2=3,
∴x22﹣3x2=1,
∴x1+x2(x22﹣3x2)=x1+x2=3,
所以答案是3.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用根與系數(shù)的關(guān)系,掌握一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l是第一、三象限的角平分線.

(1)由圖觀察易知點(diǎn)A(0,2)關(guān)于直線l的對(duì)稱點(diǎn)A′坐標(biāo)為(2,0),請(qǐng)?jiān)趫D中分別標(biāo)明點(diǎn)B(5,3),C(﹣2,﹣5)關(guān)于直線l的對(duì)稱點(diǎn)B′,C′的位置,并寫出它們的坐標(biāo):B′、C′;
(2)結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)P(a,b)關(guān)于第一、三象限的角平分線l的對(duì)稱點(diǎn)P′坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中剪去一個(gè)邊長(zhǎng)為1的小正方形CEFG,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn)B時(shí)停止(不含點(diǎn)A和點(diǎn)B),則ABP的面積S隨著時(shí)間t變化的函數(shù)圖象大致是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的直徑為10cm,如果圓心與直線的距離是6cm,那么直線和圓的公共點(diǎn)的個(gè)數(shù)為( 。

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(x3+mx+n)(x2﹣3x+4)展開式中不含x3和x2項(xiàng).
(1)求m、n的值;
(2)當(dāng)m、n取第(1)小題的值時(shí),求(m+n)(m2﹣mn+n2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列詩(shī)句所描述的事件中,是不可能事件的是(
A.黃河入海流
B.鋤禾日當(dāng)午
C.大漠孤煙直
D.手可摘星辰

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l上有一點(diǎn)P1(2,1),將點(diǎn)P1先向右平移1個(gè)單位,再向上平移2個(gè)單位得到像點(diǎn)P2,點(diǎn)P2恰好在直線l上.

(1)寫出點(diǎn)P2的坐標(biāo);

(2)求直線l所表示的一次函數(shù)的表達(dá)式;

(3)若將點(diǎn)P2先向右平移3個(gè)單位,再向上平移6個(gè)單位得到像點(diǎn)P3.請(qǐng)判斷點(diǎn)P3是否在直線l上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,P為邊BC上一動(dòng)點(diǎn),PEABE , PFACF , 動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿著BC勻速向終點(diǎn)C運(yùn)動(dòng),則線段EF的值大小變化情況是(  ).

A.一直增大
B.一直減小
C.先減小后增大
D.先增大后減少

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,∠A=3B,則∠D的度數(shù)為( )

A. 45° B. 50° C. 55° D. 60°

查看答案和解析>>

同步練習(xí)冊(cè)答案