【題目】如圖,①是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖②的形狀拼成一個(gè)正方形.
(1)②圖中陰影部分的面積為___________;
(2)觀察圖②,請你寫出式子、、之間的等量關(guān)系是_________;
(3)若,,則______________;
(4)實(shí)際上有許多恒等式可以用圖形的面積來表示.如圖③,它表示等式:____________.
【答案】(1)(m-n)2;(2)(m+n)2-4mn=(m-n)2;(3)±5(4)(2m+n)(m+n)=2m2+3mn+n2
【解析】
(1)表示出陰影部分的邊長,即可得出其面積;
(2)大正方形的面積減去矩形的面積即可得出陰影部分的面積,也可得出三個(gè)代數(shù)式(m+n)2、(m-n)2、mn之間的等量關(guān)系.
(3)根據(jù)(2)所得出的關(guān)系式,可求出(x-y)2,繼而可得出x-y的值.
(4)利用兩種不同的方法表示出大矩形的面積即可得出等式.
解:(1)∵圖②中的陰影部分的邊長是m-n,
∴面積為(m-n)2;
(2)(m+n)2-4mn=(m-n)2;
(3)∵,,
∴(x-y)2=(x+y)2-4xy=(-6)2-4×2.75 =25,
∴x-y=±5;
(4)由題意,得:(2m+n)(m+n)=2m(m+n)+n(m+n)=2m2+3mn+n2,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點(diǎn)A(0,3),B(﹣1,0),請解答下列問題:
(1)求拋物線的解析式;
(2)拋物線的頂點(diǎn)為點(diǎn)D,對稱軸與x軸交于點(diǎn)E,連接BD,求BD的長.
注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(﹣,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,桌面上放置了紅,黃,藍(lán)三個(gè)不同顏色的杯子,杯子口朝上,我們做蒙眼睛翻杯子(杯口朝上的翻為杯口朝下,杯口朝下的翻為杯口朝上)的游戲.
隨機(jī)翻一個(gè)杯子,求翻到黃色杯子的概率;
隨機(jī)翻一個(gè)杯子,接著從這三個(gè)杯子中再隨機(jī)翻一個(gè),請利用樹狀圖求出此時(shí)恰好有一個(gè)杯口朝上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD為△ABC的角平分線,CE為△ABC的高,CE 交BD于點(diǎn)F,∠A=80°,∠BCA=50°,那么∠BFC的度數(shù)是( ).
A.115°B.120°C.125°D.130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC是等腰直角三角形,BC=AC,直角頂點(diǎn)C在x軸上,一銳角頂點(diǎn)B在y軸上.
(1)如圖1所示,若AD于垂直x軸,垂足為點(diǎn)D.點(diǎn)C坐標(biāo)是(-1,0),點(diǎn)A的坐標(biāo)是(-3,1),求點(diǎn)B的坐標(biāo);
(2)如圖2,若y軸恰好平分∠ABC,AC與y軸交于點(diǎn)D,過點(diǎn)A作AE⊥y軸于E,問BD與AE有怎樣的數(shù)量關(guān)系,并說明理由;
(3)如圖3,直角邊BC在兩坐標(biāo)軸上滑動(dòng),使點(diǎn)A在第四象限內(nèi),過A點(diǎn)作AF⊥y軸于F,在滑動(dòng)的過程中,兩個(gè)結(jié)論①為定值;②為定值,只有一個(gè)結(jié)論成立,請你判斷正確的結(jié)論加以證明,并求出這個(gè)定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若,是關(guān)于的方程的兩個(gè)實(shí)數(shù)根,且(是整數(shù)),則稱方程為“偶系二次方程”.如方程,,,,,都是“偶系二次方程”.
判斷方程是否是“偶系二次方程”,并說明理由;
對于任意一個(gè)整數(shù),是否存在實(shí)數(shù),使得關(guān)于的方程是“偶系二次方程”,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D.
(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從外一點(diǎn)作的切線,,切點(diǎn)分別為,,的直徑為,連結(jié),.
求證:;
求的值;
若,求劣弧的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com