【題目】若,是關于的方程的兩個實數(shù)根,且(是整數(shù)),則稱方程為“偶系二次方程”.如方程,,,,,都是“偶系二次方程”.
判斷方程是否是“偶系二次方程”,并說明理由;
對于任意一個整數(shù),是否存在實數(shù),使得關于的方程是“偶系二次方程”,并說明理由.
【答案】(1)不是,理由見解析;(2)存在.理由見解析
【解析】
(1)求出原方程的根,再代入|x1|+|x2|看結果是否為2的整數(shù)倍就可以得出結論;
(2)由條件x2-6x-27=0和x2+6x-27=0是偶系二次方程建模,設c=mb2+n,就可以表示出c,然后根據(jù)公式法就可以求出其根,再代入|x1|+|x2|就可以得出結論.
不是,
解方程得,,,
,
∵不是整數(shù),
∴不是“偶系二次方程;
存在.理由如下:
∵和是偶系二次方程,
∴假設,
當,時,
,
∵是偶系二次方程,
∴時,,
∴,
∵是偶系二次方程,
當時,,
∴可設,
對于任意一個整數(shù),時,
,
,
∴,,
∴,
∵是整數(shù),
∴對于任何一個整數(shù),時,關于的方程是“偶系二次方程”.
科目:初中數(shù)學 來源: 題型:
【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又剩下一個四邊形,稱為第二次操作;…依此類推,若第次操作余下的四邊形是菱形,則稱原平行四邊形為階準菱形.如圖,中,若,,則為階準菱形.
判斷與推理:
①鄰邊長分別為和的平行四邊形是________階準菱形;
②小明為了剪去一個菱形,進行了如下操作:如圖,把沿折疊(點在上),使點落在邊上的點,得到四邊形.請證明四邊形是菱形.
操作、探究與計算:
①已知的鄰邊長分別為,,且是階準菱形,請畫出及裁剪線的示意圖,并在圖形下方寫出的值;
②已知的鄰邊長分別為,,滿足,,請寫出是幾階準菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某產(chǎn)品的進價為元,該產(chǎn)品的日銷量(件)是日銷價(元)的反比例函數(shù),且當售價為每件元時,每日可售出件,為獲得日利潤為元,售價應定為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,①是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖②的形狀拼成一個正方形.
(1)②圖中陰影部分的面積為___________;
(2)觀察圖②,請你寫出式子、、之間的等量關系是_________;
(3)若,,則______________;
(4)實際上有許多恒等式可以用圖形的面積來表示.如圖③,它表示等式:____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出以下五個方程:
①;②;③;④;⑤
其中一元二次方程有________(寫序號)
請你選擇其中的一個一元二次方程用適當?shù)姆椒ㄇ蟪鏊慕猓?/span>
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一位籃球運動員在距籃球筐下米處跳起投籃,球的運行線路為拋物線,當球運行到水平距離為米時達到最高高度米,然后準確地落入籃筐,已知籃圈中心到地面的高度為米,該運動員的身高為米,在這次投籃中,球在該運動員的頭頂上方米處出手,則當球出手時,該運動員離地面的高度為________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與軸的交點分別為,.
求證:拋物線總與軸有兩個不同的交點;
若,求此拋物線的解析式.
已知軸上兩點,,若拋物線與線段有交點,請寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出件,每件盈利元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調查發(fā)現(xiàn),如果每件襯衫每降價元,商場平均每天可多售出件,若商場平均每天要盈利元,每件襯衫應降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,直線AB交軸于A(2,0),交軸負半軸于B(0,-10),C為x軸正半軸上一點,且OC=5OA.
(1)求△ABC的面積.
(2)延長BA到P(自己補全圖形),使得PA=AB,過點P作PM⊥OC于M,求P點的坐標.
(3)如圖,D是第三象限內一動點,直線BE⊥CD于E, OF⊥OD交BE延長線于F.當D點運動時,的大小是否發(fā)生變化?若改變,請說明理由;若不變,求出這個比值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com