【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又剩下一個四邊形,稱為第二次操作;依此類推,若第次操作余下的四邊形是菱形,則稱原平行四邊形為階準菱形.如圖,中,若,,則階準菱形.

判斷與推理:

鄰邊長分別為的平行四邊形是________階準菱形;

小明為了剪去一個菱形,進行了如下操作:如圖,把沿折疊(點上),使點落在邊上的點,得到四邊形請證明四邊形是菱形.

操作、探究與計算:

已知的鄰邊長分別為,,且是階準菱形,請畫出及裁剪線的示意圖,并在圖形下方寫出的值;

已知的鄰邊長分別為,滿足,,請寫出是幾階準菱形.

【答案】(1)①;②見解析;(2)①見解析;②階菱形.

【解析】

解:(1)①利用鄰邊長分別為23的平行四邊形進行兩次操作,所剩四邊形是邊長為1的菱形,故鄰邊長分別為23的平行四邊形是2階準菱形:

由折疊知:∠ABE∠FBEABBF,

四邊形ABCD是平行四邊形,

∴AE∥BF,

∴∠AEB∠FBE,

∴∠AEB∠ABE,

∴AEAB,

∴AEBF,

四邊形ABFE是平行四邊形,

四邊形ABFE是菱形;

(2)①如圖所示:

②∵a6brb5r,

∴a6×5rr31r

如圖所示:

ABCD10階準菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中,,.如果點出發(fā)沿方向點勻速運動,同時點出發(fā)沿方向向點勻速運動,它們的速度均為.連接,設運動的時間為(單位:.解答下列問題:

為何值時平行于

為何值時,相似?

是否存在某時刻,使線段恰好把的周長平分?若存在,求出此時的值;若不存在,請說明理由.

是否存在某時刻,使線段恰好把的面積平分?若存在,求出此時的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程隊修建一條長1200 m的道路,采用新的施工方式,工效提升了50%,結果提前4天完成任務.

1)求這個工程隊原計劃每天修道路多少米?

2)在這項工程中,如果要求工程隊提前2天完成任務,那么實際平均每天修建道路的工效比原計劃增加百分之幾?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點A03),B﹣10),請解答下列問題:

1)求拋物線的解析式;

2)拋物線的頂點為點D,對稱軸與x軸交于點E,連接BD,求BD的長.

注:拋物線y=ax2+bx+ca≠0)的頂點坐標是(,).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道某些代數(shù)恒等式可用一些卡片拼成的圖形面積來解釋,例如:圖A可以用來解釋,實際上利用一些卡片拼成的圖形面積也可以對某些整式進行乘法運算.

1)圖B可以解釋的代數(shù)恒等式是_____________ ;

2)現(xiàn)有足夠多的正方形和矩形卡片,如圖C

①若要拼出一個面積為的矩形,則需要1號卡片 張,2號卡片 張,3號卡片 張;

②試畫出一個用若干張1號卡片、2號卡片和3號卡片拼成的矩形,使該矩形的面積為,并利用你畫的圖形面積對進行乘法運算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知為等邊三角形,點為直線上的一動點(點不與、重合),以為邊作菱形、按逆時針排列),使,連接

如圖,當點在邊上時,求證:;②;

如圖,當點在邊的延長線上且其他條件不變時,結論是否成立?若不成立,請寫出、之間存在的數(shù)量關系,并說明理由;

如圖,當點在邊的延長線上且其他條件不變時,補全圖形,并直接寫出、之間存在的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,點B、F、C、E在同一直線上,AC、DF相交于點G,ABBE,垂足為B,DEBE,垂足為E,且AC=DF,BF=EC.求證:

(1)ABC≌△DEF;

(2)FG=CG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,桌面上放置了紅,黃,藍三個不同顏色的杯子,杯子口朝上,我們做蒙眼睛翻杯子(杯口朝上的翻為杯口朝下,杯口朝下的翻為杯口朝上)的游戲.

隨機翻一個杯子,求翻到黃色杯子的概率;

隨機翻一個杯子,接著從這三個杯子中再隨機翻一個,請利用樹狀圖求出此時恰好有一個杯口朝上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】,是關于的方程的兩個實數(shù)根,且是整數(shù)),則稱方程偶系二次方程.如方程,,,,都是偶系二次方程”.

判斷方程是否是偶系二次方程,并說明理由;

對于任意一個整數(shù),是否存在實數(shù),使得關于的方程偶系二次方程,并說明理由.

查看答案和解析>>

同步練習冊答案