【題目】如圖 1,將一張矩形紙片 ABCD 沿著對角線 BD 向上折疊,頂點 C 落到點 E 處,BE 交 AD 于點 F.
(1)求證:△BDF 是等腰三角形;
(2)如圖 2,過點 D 作 DG∥BE,交 BC 于點 G,連接 FG 交 BD 于點 O.
①判斷四邊形 BFDG 的形狀,并說明理由;
②若 AB=6,AD=8,則 FG 的長為_____.
【答案】
【解析】試題分析:(1)證明△BDF是等腰三角形,可證明BF=DF,可通過證明∠EBD=∠FDB實現(xiàn),利用折疊的性質和平行線的性質解決.
(2)①先判斷四邊形BFDG是平行四邊形,再由(1)BF=FD得到結論;
②要求FG的長,可先求出OF的長,在Rt△BFO中,BO可由AB、AD的長及菱形的性質求得,解決問題的關鍵是求出BF的長.在Rt△BFA中,知AB=6、AF+BF=AD=8,可求出BF的長,問題得以解決.
試題解析:解:∵四邊形ABCD是矩形,∴AD∥BC,∴∠ADB=∠CBD,由折疊的性質可知:∠EBD=∠CBD,∴ADB=∠EBD,∴BF=FD,∴△BDF是等腰三角形;
(2)①四邊形BFDG是菱形.理由:
∵FD∥BG,DG∥BE,∴四邊形BFDG是平行四邊形.
又∵BF=DF,∴四邊形BFDG是平行四邊形;
②設AF=x,則FD=8﹣x,∴BF=FD=8﹣x.
在Rt△ABF中,62+x2=(8﹣x)2,解得:x=,∴FD=8﹣=.在Rt△ABD中,∵AB=6,AD=8,∴BD=10.
∵四邊形BFDG是菱形,∴OD=BD=5,FO=FG,FG⊥BD.在Rt△ODF中,∵FO2+DO2=FD2,即FO2+52=()2,∴FO=,∴FG=2FO=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①為Rt△AOB,∠AOB=90°,其中OA=3,OB=4.將AOB沿x軸依次以A,B,O為旋轉中心順時針旋轉.分別得圖②,圖③,…,則旋轉到圖⑩時直角頂點的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知直線l1、l2,直線l3和直線l1、l2交于點C和D,在直線l3上有動點P(點P與點C、D不重合),點A在直線l1上,點B在直線l2上.
(1)如果點P在C、D之間運動時,且滿足∠1+∠3=∠2,請寫出l1與l2之間的位置關系 ;
(2)如圖②如果l1∥l2,點P在直線l1的上方運動時,試猜想∠1+∠2與∠3之間關系并給予證明;
(3)如果l1∥l2,點P在直線l2的下方運動時,請直接寫出∠PAC、∠PBD、∠APB之間的關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結論:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售每臺進價分別為200元、150元的甲、乙兩種型號的電器,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
甲種型號 | 乙種型號 | ||
第一周 | 3臺 | 5臺 | 1900元 |
第二周 | 4臺 | 10臺 | 3200元 |
(進價、售價均保持不變,利潤=銷售收入-進貨成本)
⑴求A、B兩種型號的電風扇的銷售單價;
⑵若超市準備用不多于5000元的金額再采購這兩種型號的電風扇共30臺,且按(1)中的銷售單價全部售完利潤不少于1850元,則有幾種購貨方案?
⑶在⑵的條件下,超市銷售完這30臺電風扇哪種方案利潤最大?最大利潤是多少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖, 請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調查了 人;
(2)求文學社團在扇形統(tǒng)計圖中所占圓心角為 度;
(3)請將條形統(tǒng)計圖補充完整;
(4)若該校有 1500 名學生,請估計喜歡體育類社團的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(0,8),點B(4,0),連接AB,點M,N分別是OA,AB的中點,在射線MN上有一動點P.若△ABP是直角三角形,則點P的坐標是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】己知二次函數(shù).
(1)寫出其頂點坐標為 ,對稱軸為 ;
(2)在右邊平面直角坐標系內畫出該函數(shù)圖像;
(3)根據(jù)圖像寫出滿足的的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,D是BC的中點,且AD=AC,DE⊥BC,與AB相交于點E,EC與AD相交于點F.過C點作CG∥AD,交BA的延長線于G,過A作BC的平行線交CG于H點.
(1)若∠BAC=900,求證:四邊形ADCH是菱形;
(2)求證:△ABC∽△FCD;
(3)若DE=3,BC=8,求△FCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com