【題目】小明經(jīng)過市場調(diào)查,整理出他媽媽商店里一種商品在第天的銷售量的相關信息如下表:
時間第(天) | ||
售價(元/件) | 50 | |
每天銷量(件) |
已知該商品的進價為每件20元,設銷售該商品的每天利潤為元.
(1)求出與的函數(shù)關系式;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于2400元?請直接寫出結果.
【答案】(1);(2)15天時,當天的銷售利潤最大,最大利潤為2500元;(3)11
【解析】
(1)根據(jù)利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;
(2)根據(jù)(1)得到的兩個解析式,結合二次函數(shù)與一次函數(shù)的性質可分別得出最大值,根據(jù)有理數(shù)的比較,可得答案;
(3)根據(jù)二次函數(shù)值大于或等于2400,一次函數(shù)值大于或等于2400,可得不等式,根據(jù)解不等式,可得答案.
解:(1)當時,
;
當時,
;
綜上:
(2)當時,
∵,
∴當時,有最大值,最大值為2500元
當時,
.
∵,
∴隨的增大而減小.
∴當時,有最大值,最大值為2400元,
綜上可知,當時,當天的銷售利潤最大,最大利潤為2500元.
(3)①當1≤x<20時,y=-4x2+120x+1600≥2400,
解得:10≤x<20,
因此利潤不低于2400元的天數(shù)是10≤x<20,共10天;
②當20≤x≤30時,y=-120x+4800≥2400,
解得:x≤20,
因此利潤不低于2400元的天數(shù)是20≤x≤20,共1天,
所以該商品在整個銷售過程中,共11天每天銷售利潤不低于2400元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過點C作⊙O的切線BC,E是BC的中點,AB交⊙O于D點.
(1)直接寫出ED和EC的數(shù)量關系:_________;
(2)DE是⊙O的切線嗎?若是,給出證明;若不是,說明理由;
(3)填空:當BC=_______時,四邊形AOED是平行四邊形,同時以點O、D、E、C為頂點的四邊形是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E為AD的中點,不用圓規(guī)、量角器等工具,只用無刻度的直尺作圖.
(1)如圖1,在BC上找點F,使點F是BC的中點;
(2)如圖2,連接AC,在AC上取兩點P,Q,使P,Q是AC的三等分點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一矩形紙片OABC放在直角坐標系中,O為原點C在x軸上,OA=5,OC=13,如圖所示,在OA上取一點E,將△EOC沿EC折疊,使O點落在AB邊上的D點,則E點坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結AD.已知∠CAD=∠B,
(1)求證:AD是⊙O的切線.
(2)若BC=8,tanB=,求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,記直線y=x+1為l.點A1是直線l與y軸的交點,以A1O為邊作正方形A1OC1B1,使點C1落在在x軸正半軸上,作射線C1B1交直線l于點A2,以A2C1為邊作正方形A2C1C2B2,使點C2落在在x軸正半軸上,依次作下去,得到如圖所示的圖形.則點B4的坐標是 ,點Bn的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設銷售單價增加元,每天售出件.
(1)請寫出與之間的函數(shù)表達式;
(2)當為多少時,超市每天銷售這種玩具可獲利潤2250元?
(3)設超市每天銷售這種玩具可獲利元,當為多少時最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】植樹節(jié)期間,某單位欲購進A、B兩種樹苗,若購進A種樹苗3棵,B種樹苗5棵,需2100元,若購進A種樹苗4棵,B種樹苗10棵,需3800元.
(1)求購進A、B兩種樹苗的單價;
(2)若該單位準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com