【題目】在平面直角坐標系xOy中,記直線y=x+1為l.點A1是直線l與y軸的交點,以A1O為邊作正方形A1OC1B1,使點C1落在在x軸正半軸上,作射線C1B1交直線l于點A2,以A2C1為邊作正方形A2C1C2B2,使點C2落在在x軸正半軸上,依次作下去,得到如圖所示的圖形.則點B4的坐標是 ,點Bn的坐標是

【答案】(15,8); (2n-1,2n-1.

【解析】

試題解析:把x=0代入直線y=x+1,可得:y=1,

所以可得:點B1的坐標是(1,1)

把x=1代入直線y=x+1,可得:y=2,

所以可得:點B2的坐標是(3,2),

同理可得點B3的坐標是(7,4);點B4的坐標是(15,8);

由以上得出規(guī)律是Bn的坐標為(2n-1,2n-1).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系內(nèi),已知點A0,6)、點B8,0),動點P從點A開始在線段AO上以每秒1個單位長度的速度向點O移動,同時動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A移動,設點PQ移動的時間為t秒.

1求直線AB的解析式;

2t為何值時,△APQ與△AOB相似?

3t為何值時,△APQ的面積為個平方單位?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,關于x的方程:x+c+的解是x1c,x2;xc的解是x1c,x2=﹣;x+c+的解是x1c,x2x+c+的解是x1c,x2……

1)請觀察上述方程與解的特征,比較關于x的方程x+c+a≠0)與它們的關系猜想它的解是什么,并利用方程的解的概念進行驗證.

2)可以直接利用(1)的結論,解關于x的方程:x+a+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明經(jīng)過市場調(diào)查,整理出他媽媽商店里一種商品在第天的銷售量的相關信息如下表:

時間第(天)

售價(元/件)

50

每天銷量(件)

已知該商品的進價為每件20元,設銷售該商品的每天利潤為.

1)求出的函數(shù)關系式;

2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于2400元?請直接寫出結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BC10,高AD8M、N、P分別在邊AB、BC、AC上移動,但不與AB、C重合,連接MN、NP、MP,且MP始終與BC保持平行,ADMP相交于點E,設MPx,MNP的面積用y表示.

1)求y關于x的函數(shù)關系式;

2)當x取什么值時,y有最大值,并求出的最大值;

3)當x取什么值時,MNP是等腰直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商業(yè)集團新建一小車停車場,經(jīng)測算,此停車場每天需固定支出的費用(設施維修費、車輛管理人員工資等)為800元.為制定合理的收費標準,該集團對一段時間每天小車停放輛次與每輛次小車的收費情況進行了調(diào)查,發(fā)現(xiàn)每輛次小車的停車費不超過5元時,每天來此處停放的小車可達1440輛次;若停車費超過5元,則每超過1元,每天來此處停放的小車就減少120輛次.為便于結算,規(guī)定每輛次小車的停車費x(元)只取整數(shù),用y(元)表示此停車場的日凈收入,且要求日凈收入不低于2512元.(日凈收入=每天共收取的停車費﹣每天的固定支出)

1)當x5時,寫出yx之間的關系式,并說明每輛小車的停車費最少不低于多少元;

2)當x5時,寫出yx之間的函數(shù)關系式(不必寫出x的取值范圍);

3)該集團要求此停車場既要吸引客戶,使每天小車停放的輛次較多,又要有較大的日凈收入.按此要求,每輛次小車的停車費應定為多少元?此時日凈收入是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交與A(1,0),B(- 3,0)兩點

(1)求該拋物線的解析式;

(2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地盛產(chǎn)櫻桃,一年一度的櫻桃節(jié)期間,很多果園推出了免費品嘗和優(yōu)惠采摘活動,其中甲、乙兩家果園的櫻桃品質(zhì)相同,銷售價格也相同,但推出了不同的采摘方案:

甲園

游客進園需購買人的門票,采摘的櫻桃六折優(yōu)惠

乙園

游客進園不需購買門票,采摘的櫻桃在一定數(shù)量以內(nèi)按原價購買,超過部分打折購買

小明和爸爸、媽媽在櫻桃節(jié)期間也來采摘櫻桃,若設他們的櫻桃采摘量為(千克)(出園時將自己采摘的櫻桃全部購買),在甲采摘園所需總費用為(元)在乙采摘園所需總費用為(元),圖中的折線表示之間的函數(shù)關系.

1)①甲、乙兩果園的櫻桃單價為_____________千克;

②直接寫出的函數(shù)表達式:_________________,并在圖中補畫出的函數(shù)圖象;

2)求出之間的函數(shù)關系式;

3)若小明一家當天所采摘的櫻桃不少于千克,選擇哪個采摘園更劃算?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A的坐標為(0,7),點B的坐標為(0,3),點C的坐標為(30).

1)在圖中作出ABC的外接圓⊙P(保留必要的作圖痕跡,不寫作法)

2 若在x軸的正半軸上有一點D(異與C點),且∠ADB=∠ACB,則點D的坐標為 

3)若用扇形PAC圍成一個圓錐,那么這個圓錐的底面半徑為   

查看答案和解析>>

同步練習冊答案