如圖1,在四邊形中,,分別是的中點(diǎn),連結(jié)并延長,分別與的延長線交于點(diǎn),則(不需證明).

(溫馨提示:在圖1中,連結(jié),取的中點(diǎn),連結(jié),根據(jù)三角形中位線定理,證明,從而,再利用平行線性質(zhì),可證得.)

問題一:如圖2,在四邊形中,相交于點(diǎn),,分別是的中點(diǎn),連結(jié),分別交于點(diǎn),判斷的形狀,請直接寫出結(jié)論.

問題二:如圖3,在中,,點(diǎn)在上,,分別是的中點(diǎn),連結(jié)并延長,與的延長線交于點(diǎn),若,連結(jié),判斷的形狀并證明.

 


(1)等腰三角形

(2)判斷出直角三角形

證明:如圖連結(jié),取的中點(diǎn),連結(jié),

 


 的中點(diǎn),

,

同理,

,

,

是等邊三角形.

,

,

是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012屆上海市徐匯初三二模數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖6,在四邊形中,平分,,

(1)求證:四邊形是等腰梯形;                             (6分)
(2)取邊的中點(diǎn),聯(lián)結(jié).求證:四邊形是菱形.     (6分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年上海市徐匯初三二模數(shù)學(xué)試卷(解析版) 題型:解答題

如圖6,在四邊形中,,平分,

(1)求證:四邊形是等腰梯形;                              (6分)

(2)取邊的中點(diǎn),聯(lián)結(jié).求證:四邊形是菱形.      (6分)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:模擬題 題型:解答題

有些幾何圖形的面積,直接計(jì)算往往難以下手或非常繁雜,若能根據(jù)題設(shè)條件和圖形特征恰當(dāng)?shù)貙⑵溲a(bǔ)成特殊圖形,再根據(jù)特殊圖形的性質(zhì)解答,則可以使問題簡捷獲解,例如下面的第(1)、(2)小題就分別可以補(bǔ)成直角三角形、等腰三角形進(jìn)行求解(如圖),請按所給的補(bǔ)形后的圖形分別求解(1)、(2),在此基礎(chǔ)上求解(3)
(1) 如圖1,在四邊形中,,∠A=60°,∠B﹦∠D﹦90°, 求四邊形的面積;
(2) 如圖2,在梯形中,AB∥CD,CE是∠的平分線,且CE⊥AD,,CE把梯形分成面積為S2的兩部分,若﹦1,求的值
(3) 如圖3,一個六邊形的六個內(nèi)角都是120°,連續(xù)四邊的長依次是1、3、3、2, 求該六邊形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在四邊形中,,分別是的中點(diǎn),連結(jié)并延長,分別與的延長線交于點(diǎn),則(不需證明).

(溫馨提示:在圖1中,連結(jié),取的中點(diǎn),連結(jié),根據(jù)三角形中位線定理,證明,從而,再利用平行線性質(zhì),可證得.)

問題一:如圖2,在四邊形中,相交于點(diǎn),分別是的中點(diǎn),連結(jié),分別交于點(diǎn),判斷的形狀,請直接寫出結(jié)論.

問題二:如圖3,在中,點(diǎn)在上,分別是的中點(diǎn),連結(jié)并延長,與的延長線交于點(diǎn),若,連結(jié),判斷的形狀并證明.

查看答案和解析>>

同步練習(xí)冊答案