【題目】如圖,C、D是直線AB上兩點,DE平分∠CDF,∠ACE=60°,∠CDF=60°,求∠CED的度數(shù).請完善解答過程,并在括號內(nèi)填寫相應的理論依據(jù).
解:∵∠ACE=60°,∠CDF=60°,(已知)
∴∠ACE=∠CDF.(等量代換)
∴ ∥ ,( )
∴∠CED=∠ ,( )
∵DE平分∠CDF,(已知)
∴∠EDF=∠CDF=×60°=30°.( )
∴∠CED=30°.(等量代換)
科目:初中數(shù)學 來源: 題型:
【題目】將連續(xù)的奇數(shù)1,3,5,7,9,…,2019,排成如圖所示的數(shù)陣.十字框能上下左右移動,可框住5個數(shù).
(1)如圖,若十字框中間的數(shù)為25,這5個數(shù)的和是多少?
(2)設十字框中間的數(shù)為,用式子表示另外4個數(shù).
(3)框住的5個數(shù)的和能否等于2020,請說明理由.
(4)框住的5個數(shù)的和最大是多少?(給出結果,不說理由.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把若干個正奇數(shù)1,3,5,7,…,2015,按一定規(guī)律(如圖方式)排列成一個表.
(1)在這個表中,共有多少個數(shù)?2011在第幾行第幾列?(如57在第4行第5列);
(2)如圖,用一十字框在表中任意框住5個數(shù),設中間的數(shù)為a,用代數(shù)式表示十字框中的五個數(shù)之和;
(3)十字框中的五個數(shù)的和能等于6075嗎?若能,請寫出這五個數(shù);若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學課上,老師提出如下問題:如何使用尺規(guī)完成“過直線l外一點P作已知直線l的平行線”.
小明的作法如下:
①在直線l上取一點A,以點A為圓心,AP長為半徑作弧,交直線l于點B;
②分別以P,B為圓心,以AP長為半徑作弧,兩弧相交于點Q(與點A不重合);
③作直線PQ.所以直線PQ就是所求作的直線.根據(jù)小明的作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵AB=AP= = .
∴四邊形ABQP是菱形( )(填推理的依據(jù)).
∴PQ∥l.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為轉變教育管理方式并為學校教育教學提供參考,某區(qū)240名學生參加2019年國家義務教育質量檢測,在測試中隨機抽取若干名學生的音樂成績進行
某區(qū)音樂成績分布表
成績 | 頻數(shù) | 頻率 |
合計 |
某區(qū)音樂成績頻數(shù)分布直方圖
(1)頻數(shù)分布表中:,,,.
(2)根據(jù)題意,補全頻數(shù)分布直方圖;
(3)如果成績達到90及90分以上者為優(yōu)秀,估計該區(qū)優(yōu)秀學生大約有人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=10cm,C是線段AB上一個動點,沿A→B→A以2cm/s的速度往返運動一次,D是線段BC的中點,設點C的運動時間為t秒(0≤t≤10).
(1)當t=2時,求線段CD的長.
(2)當t=6時,求線段AC的長.
(3)求運動過程中線段AC的長.(用含t的代數(shù)式表示)
(4)在運動過程中,設AC的中點為E,線段DE的長是否發(fā)生變化?若不變,直接寫出DE的長;若發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,點P是AB邊上的一個動點,連接CP,過點P作PC的垂線交AD于點E,以 PE為邊作正方形PEFG,頂點G在線段PC上,對角線EG、PF相交于點O.
(1)若AP=1,則AE= ;
(2)①求證:點O一定在△APE的外接圓上;
②當點P從點A運動到點B時,點O也隨之運動,求點O經(jīng)過的路徑長;
(3)在點P從點A到點B的運動過程中,△APE的外接圓的圓心也隨之運動,求該圓心到AB邊的距離的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與x軸交于點A,與y軸交于點B(0,2),且與正比例函數(shù)y=x的圖象交于點C(m,3).
(1)求一次函數(shù)y=kx+b(k≠0)的函數(shù)關系式;
(2)△AOC的面積為______;
(3)若點M在第二象限,△MAB是以AB為直角邊的等腰直角三角形,直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在直線上,點在、兩點之間,點為線段PB的中點,點為線段的中點,若,且使關于的方程無解.
①求線段的長;
②線段的長與點在線段上的位置有關嗎?請說明理由;
(2)如圖2,點為線段的中點,點在線段的延長線上,試說明的值不變.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com