【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護(hù)區(qū)開展了尋找古樹活動(dòng),如圖,在一個(gè)坡度(坡比)的山坡上發(fā)現(xiàn)一棵古樹,測(cè)得古樹低端到山腳點(diǎn)的距離米,在距山腳點(diǎn)水平距離米的點(diǎn)處,測(cè)得古樹頂端的仰角(古樹與山坡的剖面、點(diǎn)在同一平面內(nèi),古樹與直線垂直),求古樹的高度約為多少米? (結(jié)果保留一位小數(shù),參考數(shù)據(jù))

【答案】23.3

【解析】

延長(zhǎng)DCEA的延長(zhǎng)線于點(diǎn)F,則CFEF,設(shè)CFk,由i1:2.4,則AF2.4k,在RtACF中,根據(jù)勾股定理得到列方程求k值,從而求得CF的長(zhǎng),然后在RtDEF中,利用tanE解直角三角形求得DF的長(zhǎng),從而使問題得解.

解:延長(zhǎng)交直線于點(diǎn),則

∴設(shè)CFk,由i1:2.4,則AF2.4k,

RtACF中,由勾股定理得,

,

解得:k10,

CF10,AF24,

EFAFAE30

RtDEF中,tanE

故古樹的高度約為米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問題:

1)這次被調(diào)查的學(xué)生共有多少人;

2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;

3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖物體由兩個(gè)圓錐組成.其主視圖中,,,若上面圓錐的側(cè)面積為,則下面圓錐的側(cè)面積為(

A.2B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化校園,學(xué)校決定利用現(xiàn)有的2660盆甲種花卉和3000盆乙種花卉搭配A、B兩種園藝造型共50個(gè)擺放在校園內(nèi),已知搭配一個(gè)A種造型需甲種花卉70盆,乙種花卉30盆,搭配一個(gè)B種造型需甲種花卉40盆,乙種花卉80盆.則符合要求的搭配方案有幾種( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的直徑,的兩條切線,相切于點(diǎn),分別交、、兩點(diǎn)

1)如圖1,求證:

2)如圖2,連接并延長(zhǎng)交于點(diǎn),連接.若,,求圖中陰影部分的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=-x-x,y兩軸分別交于A,B兩點(diǎn),與反比例函數(shù)y=的圖象在第二象限交于點(diǎn)C.過點(diǎn)Ax軸的垂線交該反比例函數(shù)圖象于點(diǎn)D.若AD=AC,則點(diǎn)D的縱坐標(biāo)為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,CD平分∠ACBAB于點(diǎn)D,按下列步驟作圖:

步驟1:分別以點(diǎn)C和點(diǎn)D為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于M,N兩點(diǎn);

步驟2:作直線MN,分別交AC,BC于點(diǎn)E,F(xiàn);

步驟3:連接DE,DF.

AC=4,BC=2,則線段DE的長(zhǎng)為  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形中,點(diǎn)分別是的中點(diǎn),交于點(diǎn)P,則的長(zhǎng)度為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EF在正方形ABCD的對(duì)角線BD上,且BE=DF.求證:

1ABE≌△CDF

2)四邊形AECF是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案