【題目】如圖直角坐標(biāo)系中,以M3,0)為圓心的⊙Mx軸負(fù)半軸于A,交x軸正半軸于B,交y軸于C、D

1)若C點(diǎn)坐標(biāo)為(0,4),求點(diǎn)A坐標(biāo).

2)在(1)的條件下,在⊙M上,是否存在點(diǎn)P,使∠CPM=45°,若存在,求出滿足條件的點(diǎn)P

3)過(guò)C⊙M的切線CE,過(guò)AAN⊥CEF,交⊙MN,當(dāng)⊙M的半徑大小發(fā)生變化時(shí).AN的長(zhǎng)度是否變化?若變化,求變化范圍,若不變,證明并求值.

【答案】1A﹣2,0);(2P17,3),P2﹣1,﹣3);(3AN的長(zhǎng)不變?yōu)?/span>6

【解析】

1)結(jié)合題意,連接CM,根據(jù)點(diǎn)M和點(diǎn)C的坐標(biāo)可得出⊙M的半徑,即MA的長(zhǎng),利用M的坐標(biāo)即可得出A的坐標(biāo);

2)假設(shè)存在這樣的點(diǎn)P,根據(jù)題意,可知△CMP為等腰直角三角形,且CM=MP=5.根據(jù)圓的方程和兩點(diǎn)直接的距離公式列出方程組,解之即可得出點(diǎn)P的坐標(biāo);

3)作MH⊥ANH,則AH=NH,易證△AMH≌△MCO,故AH=M0.從而可證AH為一定值.

1)如圖①,連接CM,

RtCOM中,OC=4OM=3,CM==5,

AM=5,

OA=2

A-2,0);

2)假設(shè)存在這樣的點(diǎn)Px,y),結(jié)合題意,

可得△CMP為等腰直角三角形,且CM=PM=5

CP=5;

結(jié)合題意有,

;

解之得:

,

即存在兩個(gè)這樣的點(diǎn)P;

P17,3),P2(﹣1,﹣3);

3AN的長(zhǎng)不變?yōu)?/span>6

如圖②,連接CM,作MHANH,

AH=HN

EC切⊙M,

∴∠ECM=90°,

∴四邊形DMCF是矩形,

∴∠CMH=90°,

在△AMH和△MCO中,

∵∠CMO=MAH=90°-AMH,

COM=ADM=90°,

CM=AM,

∴△AMH≌△MCO

AH=MO=3,

AN=HN+AH=3+3=6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年植樹節(jié)期間,某景觀園林公司購(gòu)進(jìn)一批成捆的,兩種樹苗,每捆種樹苗比每捆種樹苗多10棵,每捆種樹苗和每捆種樹苗的價(jià)格分別是630元和600元,而每棵種樹苗和每棵種樹苗的價(jià)格分別是這一批樹苗平均每棵價(jià)格的0.9倍和1.2倍.

1)求這一批樹苗平均每棵的價(jià)格是多少元?

2)如果購(gòu)進(jìn)的這批樹苗共5500棵,種樹苗至多購(gòu)進(jìn)3500棵,為了使購(gòu)進(jìn)的這批樹苗的費(fèi)用最低,應(yīng)購(gòu)進(jìn)種樹苗和種樹苗各多少棵?并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小麗為更好的掌握一元二次方程根的判斷情況,兩人玩一個(gè)游戲:

在一個(gè)不透明口袋中裝有分別標(biāo)有 -1,0,1,2的四個(gè)小球,除了數(shù)字不同之外,這些小球完全一樣.

1)從中任取1球,此小球是非負(fù)數(shù)的概率是__________

2)小明從四球中任取兩球,數(shù)字和記為m,若一元二次方程有實(shí)根,小明贏,無(wú)實(shí)根小麗贏.這個(gè)游戲公平嗎?請(qǐng)你用樹狀圖或列舉法分別求出小明、小麗贏的概率,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近幾年,國(guó)內(nèi)快遞業(yè)務(wù)快速發(fā)展,由于其便捷、高效,人們?cè)絹?lái)越多地通過(guò)快遞公司代辦點(diǎn)來(lái)代寄包裹.某快遞公司某地區(qū)一代辦點(diǎn)對(duì)60天中每天代寄的包裹數(shù)與天數(shù)的數(shù)據(jù)(每天代寄包裹數(shù)、天數(shù)均為整數(shù))統(tǒng)計(jì)如下:

1)求該數(shù)據(jù)中每天代寄包裹數(shù)在范圍內(nèi)的天數(shù);

2)若該代辦點(diǎn)對(duì)顧客代寄包裹的收費(fèi)標(biāo)準(zhǔn)為:重量小于或等于1千克的包裹收費(fèi)8元;重量超1千克的包裹,在收費(fèi)8元的基礎(chǔ)上,每超過(guò)1千克(不足1千克的按1千克計(jì)算)需再收取2元.

①某顧客到該代辦點(diǎn)寄重量為1.6千克的包裹,求該顧客應(yīng)付多少元費(fèi)用?

②這60天中,該代辦點(diǎn)為顧客代寄的包表中有一部分重量超過(guò)2千克,且不超過(guò)5千克.現(xiàn)從中隨機(jī)抽取40件包裹的重量數(shù)據(jù)作為樣本,統(tǒng)計(jì)如下:

重量G(單位:千克)

件數(shù)(單位:件)

15

10

15

求這40件包裹收取費(fèi)用的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣x2x+x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn).

(1)如圖1,連接CD,求線段CD的長(zhǎng);

(2)如圖2,點(diǎn)P是直線AC上方拋物線上一點(diǎn),PFx軸于點(diǎn)F,PF與線段AC交于點(diǎn)E;將線段OB沿x軸左右平移,線段OB的對(duì)應(yīng)線段是O1B1,當(dāng)PE+EC的值最大時(shí),求四邊形PO1B1C周長(zhǎng)的最小值,并求出對(duì)應(yīng)的點(diǎn)O1的坐標(biāo);

(3)如圖3,點(diǎn)H是線段AB的中點(diǎn),連接CH,將△OBC沿直線CH翻折至△O2B2C的位置,再將△O2B2C繞點(diǎn)B2旋轉(zhuǎn)一周在旋轉(zhuǎn)過(guò)程中,點(diǎn)O2,C的對(duì)應(yīng)點(diǎn)分別是點(diǎn)O3,C1,直線O3C1分別與直線AC,x軸交于點(diǎn)M,N.那么,在△O2B2C的整個(gè)旋轉(zhuǎn)過(guò)程中,是否存在恰當(dāng)?shù)奈恢,使?/span>AMN是以MN為腰的等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的線段O2M的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問題背景)如圖,在中,,點(diǎn)DE分別在邊上,,連接,點(diǎn)P的中點(diǎn).

(觀察猜想)觀察圖1,猜想線段的數(shù)量關(guān)系是________,位置關(guān)系是________

2)(拓展探究)把繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,(1)中的結(jié)論是否仍然成立,若成立,請(qǐng)證明:否則寫出新的結(jié)論并說(shuō)明理由.

3)(問題解決)把繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若,請(qǐng)直接寫出線段長(zhǎng)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.

1)請(qǐng)問1輛甲種客車與1輛乙種客車的載客量分別為多少人?

2)某學(xué)校組織240名師生集體外出活動(dòng),擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點(diǎn).若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請(qǐng)給出最節(jié)省費(fèi)用的租車方案,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)操作發(fā)現(xiàn)

如圖①,在中,,點(diǎn)D上一點(diǎn),沿折疊,使得點(diǎn)C恰好落在上的點(diǎn)E處.則的數(shù)量關(guān)系為______________;

2)問題解決

如圖②,若(1)中,其他條件不變,請(qǐng)猜想之間的關(guān)系,并證明你的結(jié)論;

3)類比探究

如圖③,在四邊形中,,連接,點(diǎn)E上一點(diǎn),沿折疊使得點(diǎn)D正好落在上的點(diǎn)F處,若,直接寫出的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線11yk1x+3分別與x軸,y軸交于A(﹣30),B兩點(diǎn),與直線l2yk2x交于點(diǎn)C,SAOC9

1)求tanBAO的值;

2)求出直線l2的解析式;

3P為線段AC上一點(diǎn)(不含端點(diǎn)),連接OP,一動(dòng)點(diǎn)H從點(diǎn)O出發(fā),沿線段OP以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)到P,再沿線段PC以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)到點(diǎn)C后停止,請(qǐng)直接寫出點(diǎn)H在整個(gè)運(yùn)動(dòng)過(guò)程的最少用時(shí).

查看答案和解析>>

同步練習(xí)冊(cè)答案