【題目】菱形中,,點(diǎn)在邊上,點(diǎn)在邊上.

(1)如圖,若的中點(diǎn),,求證:;

(2)如圖,若,求證:是等邊三角形.

【答案】見(jiàn)解析

【解析】

(1)首先連接AC,由菱形ABCD中,∠B=60°,根據(jù)菱形的性質(zhì),易得△ABC是等邊三角形,又由三線合一,可證得AE⊥BC,繼而求得∠FEC=∠CFE,即可得EC=CF,繼而證得BE=DF;

(2)首先由△ABC是等邊三角形,即可得AB=AC,以求得∠ACF=∠B=60°,然后利用平行線與三角形外角的性質(zhì),可求得∠AEB=∠AFC,證得△AEB≌△AFC,即可得AE=AF,證得:△AEF是等邊三角形.

(1)連接

在菱形中,

,,

是等邊三角形,

的中點(diǎn),

,

,

,

,

;

(2)∵是等邊三角形,

,,

,

,

,

中,

,

,

是等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,下列說(shuō)法正確的個(gè)數(shù)是( )

①拋物線與x軸的一個(gè)交點(diǎn)為(﹣2,0);②拋物線與y軸的交點(diǎn)為(0,6);

③拋物線的對(duì)稱軸是x=1;④在對(duì)稱軸左側(cè)yx增大而增大.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一個(gè)△ABC,頂點(diǎn)A(﹣1,3),B(2,0),C(﹣3,﹣1).

(1)畫出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1(不寫畫法);

點(diǎn)A關(guān)于x軸對(duì)稱的點(diǎn)坐標(biāo)為   

點(diǎn)B關(guān)于y軸對(duì)稱的點(diǎn)坐標(biāo)為   

點(diǎn)C關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)為   

(2)若網(wǎng)格上的每個(gè)小正方形的邊長(zhǎng)為1,則△ABC的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為的菱形中,對(duì)角線,點(diǎn)是直線上的動(dòng)點(diǎn),,

如圖,在邊長(zhǎng)為的菱形中,對(duì)角線,點(diǎn)是直線上的動(dòng)點(diǎn),,

對(duì)角線的長(zhǎng)是________,菱形的面積是________;

如圖,當(dāng)點(diǎn)在對(duì)角線上運(yùn)動(dòng)時(shí),的值是否發(fā)生變化?請(qǐng)說(shuō)明理由;

如圖,當(dāng)點(diǎn)在對(duì)角線的延長(zhǎng)線上時(shí),的值是否發(fā)生變化?若不變請(qǐng)說(shuō)明理由,若變化,請(qǐng)直接寫出、之間的數(shù)量關(guān)系,不用明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖的實(shí)線部分是由 RtABC 經(jīng)過(guò)兩次折疊得到的,首先將 RtABC 沿 BD 折疊,使點(diǎn) C落在斜邊上的點(diǎn) C′處,再沿 DE 折疊,使點(diǎn) A 落在 DC′的延長(zhǎng)線上的點(diǎn) A′處.若圖中∠C=90°,DE=3cm,BD=4cm,則 DC′的長(zhǎng)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=2,若點(diǎn)M,N分別在OA,OB上,且△PMN為等邊三角形,則滿足上述條件的△PMN有(

A.2個(gè)B.3個(gè)C.4個(gè)D.無(wú)數(shù)個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為打造書香校園,計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的書柜放置新購(gòu)進(jìn)的圖書,調(diào)查發(fā)現(xiàn),若購(gòu)買甲種書柜3個(gè)、乙種書柜2個(gè),共需資金1020元;若購(gòu)買甲種書柜4個(gè),乙種書柜3個(gè),共需資金1440元.

(1)甲、乙兩種書柜每個(gè)的價(jià)格分別是多少元?

(2)若該校計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的書柜共20個(gè),其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請(qǐng)?jiān)O(shè)計(jì)幾種購(gòu)買方案供這個(gè)學(xué)校選擇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DBC邊的中點(diǎn),DEBC,∠ABC的角平分線BFDE于點(diǎn)P,交AC于點(diǎn)M,連接PC

(Ⅰ)若∠A60°,∠ACP24°,求∠ABP的度數(shù);

(Ⅱ)若ABBC,BM2+CM2m2m0),△PCM的周長(zhǎng)為m+2時(shí),求△BCM的面積(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝廠里有許多剩余的三角形邊角料,找出一塊△ABC,測(cè)得∠C=90°(如圖),現(xiàn)要從這塊三角形上剪出一個(gè)半圓O,做成玩具,要求:使半圓O與三角形的兩邊AB、AC相切,切點(diǎn)分別為D、C,且與BC交于點(diǎn)E.

(1)在圖中設(shè)計(jì)出符合要求的方案示意圖.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡).

(2)RtABC中,AC=3,AB=5,連接AO,求出AO的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案