【題目】某水產養(yǎng)殖戶進行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數(shù)關系為:
p=,日銷售量y(千克)與時間第t(天)之間的函數(shù)關系如圖所示.
(1)求日銷售量y與時間t的函數(shù)解析式;
(2)哪一天的日銷售利潤最大?最大利潤是多少?
(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2 400元?
(4)在實際銷售的前40天中,該養(yǎng)殖戶決定每銷售1千克小龍蝦,就捐贈m(m<7)元給村里的特困戶.在這前40天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求m的取值范圍.
【答案】(1)y=-2t+200(1≤t≤80,t為整數(shù));(2)第30天的日銷售利潤最大,最大利潤為2 450元;(3)共有21天符合條件(4)<m<7.
【解析】
試題(1)根據(jù)函數(shù)圖象,利用待定系數(shù)法求解可得;
(2)設日銷售利潤為w,分1≤t≤40和41≤t≤80兩種情況,根據(jù)“總利潤=每千克利潤×銷售量”列出函數(shù)解析式,由二次函數(shù)的性質分別求得最值即可判斷;
(3)求出w=2400時x的值,結合函數(shù)圖象即可得出答案;
(4)依據(jù)(2)中相等關系列出函數(shù)解析式,確定其對稱軸,由1≤t≤40且銷售利潤隨時間t的增大而增大,結合二次函數(shù)的性質可得答案.
試題解析:(1)設解析式為y=kt+b,將(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤x≤80,t為整數(shù));
(2)設日銷售利潤為w,則w=(p﹣6)y,①當1≤t≤40時,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,∴當t=30時,w最大=2450;
②當41≤t≤80時,w=(﹣t+46﹣6)(﹣2t+200)=(t﹣90)2﹣100,∴當t=41時,w最大=2301,∵2450>2301,∴第30天的日銷售利潤最大,最大利潤為2450元.
(3)由(2)得:當1≤t≤40時,w=﹣(t﹣30)2+2450,令w=2400,即﹣(t﹣30)2+2450=2400,解得:t1=20、t2=40,由函數(shù)w=﹣(t﹣30)2+2450圖象可知,當20≤t≤40時,日銷售利潤不低于2400元,而當41≤t≤80時,w最大=2301<2400,∴t的取值范圍是20≤t≤40,∴共有21天符合條件.
(4)設日銷售利潤為w,根據(jù)題意,得:
w=(t+16﹣6﹣m)(﹣2t+200)=﹣t2+(30+2m)t+2000﹣200m,其函數(shù)圖象的對稱軸為t=2m+30,∵w隨t的增大而增大,且1≤t≤40,∴由二次函數(shù)的圖象及其性質可知2m+30≥40,解得:m≥5,又m<7,∴5≤m<7.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正三角形的邊長為.
如圖①,正方形的頂點、在邊上,頂點在邊上,在正三角形及其內部,以點為位似中心,作正方形的位似正方形,且使正方形的面積最大(不要求寫作法);
求中作出的正方形的邊長;
如圖②,在正三角形中放入正方形和正方形,使得、在邊上,點、分別在邊、上,求這兩個正方形面積和的最大值和最小值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,M是OA上一點,過M作AB的垂線交AC于點N,交BC的延長線于點E,直線CF交EN于點F,若∠BAC=30°,且∠ECF=∠E.
(1)試判斷CF與⊙O的位置關系,并說明理由;
(2)設⊙O的半徑為2,且AC=CE,求AM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點A(0,8),點B(6,8),若點P同時滿足下列條件:①點P到A,B兩點的距離相等;②點P到∠xOy的兩邊距離相等.則點P的坐標為( ).
A.(3,5)B.(6,6)C.(3,3)D.(3,6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一個邊長為a的大正方形和四個邊長為b的全等的小正方形(其中a>2b),按如圖方式擺放,并順次連接四個小正方形落入大正方形內部的頂點,得到四邊形ABCD.
下面有四種說法:
①陰影部分周長為4a;
②陰影部分面積為(a+2b)(a-2b);
③四邊形ABCD周長為8a-4b;
④四邊形ABCD的面積為a24ab4b2.
所有合理說法的序號是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,則下列個代數(shù)式:,,,,,中,其值為正的式子的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC的外側作直線AP,點C關于直線AP的對稱點為點D,連接AD,BD,其中BD交直線AP于點E.
(1)依題意補全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);
(3)連結CE,寫出AE, BE, CE之間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學習概率的課堂上,老師提出問題:一口袋裝有除顏色外均相同的2個紅球1個白球和1個籃球,小剛和小明想通過摸球來決定誰去看電影,同學甲設計了如下的方案:第一次隨機從口袋中摸出一球(不放回);第二次再任意摸出一球,兩人勝負規(guī)則如下:摸到“一紅一白”,則小剛看電影;摸到“一白一藍”,則小明看電影.
(1)同學甲的方案公平嗎?請用列表或畫樹狀圖的方法說明;
(2)你若認為這個方案不公平,那么請你改變一下規(guī)則,設計一個公平的方案.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com