【題目】如圖,在△ABC中,D、E兩點分別在BC、AD上,且AD為∠BAC的角平分線,若∠ABE∠C,AE:ED=2:1,則△BDE與△ABC的面積之比為( )
A. 1:6 B. 1:9 C. 2:13 D. 2:15
【答案】D
【解析】
根據已知條件先求得S△ABE:S△BED=2:1,再根據三角形相似求得S△ACD=S△ABE=S△BED,根據S△ABC=S△ABE+S△ACD+S△BED即可求得.
解:∵AD:ED=2:1,
∴AE:AD=2:3,
∵∠ABE=∠C,∠BAE=∠CAD,
∴△ABE∽△ACD,
∴S△ABE:S△ACD=4:9,
∴S△ACD=S△ABE,
∵AE:ED=2:1,
∴S△ABE:S△BED=2:1,
∴S△ABE=2S△BED,
∴S△ACD=S△ABE=S△BED,
又∵S△ABC=S△ABE+S△ACD+S△BED=2S△BED+S△BED+S△BED=S△BED.
∴△BDE與△ADC的面積比為2:15,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2+2x+m﹣2=0有兩個實數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( )
A.帶①去B.帶②去C.帶③去D.帶①和②去
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經市場調查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.
(1)設每件童裝降價x元時,每天可銷售______ 件,每件盈利______ 元;(用x的代數(shù)式表示)
(2)每件童裝降價多少元時,平均每天贏利1200元.
(3)要想平均每天贏利2000元,可能嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.
(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;
(2)求矩形菜園ABCD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2+ax+a-2=0.
(1)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根;
(2)若該方程的一個根為1,求a的值及該方程的另一根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖中的小方格都是邊長為1的正方形, △ABC與△A′ B′ C′是關于點0為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.
(1)畫出位似中心點0;
(2)求出△ABC與△A′B′C′的位似比;
(3)以點0為位似中心,再畫一個△A1B1C1,使它與△ABC的位似比等于1.5.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學興趣小組的活動中,小明進行數(shù)學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,AD與AE在同一直線上,AB與AG在同一直線上.
⑴小明發(fā)現(xiàn)DG⊥BE,請你幫他說明理由.
⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時BE的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com