如圖,矩形ABCD,AD=8,DC=6,在對角線AC上取一點(diǎn)O,以O(shè)C為半徑的圓切AD于E,交BC于F,交CD于G.
(1)求⊙O的半徑R;
(2)設(shè)∠BFE=α,∠CED=β,請寫出α,β,90°三者之間的關(guān)系式(只需寫出一個)并證明你的結(jié)論.

【答案】分析:(1)首先根據(jù)勾股定理可以求出AC的長度,根據(jù)AD是圓的切線,連接OE半徑,得出△AOE∽△ACD,這樣就可以列出關(guān)于半徑的方程,解方程即可求出半徑;
(2)根據(jù)弦切角定理,β等于α的鄰補(bǔ)角∠EFC,所以三者關(guān)系可以很容易寫出.
解答:解:(1)連接OE,則OE⊥AD,
∴△AOE∽△ACD

∵矩形ABCD
∴AC===10

解得R=
∴⊙O的半徑R=;

(2)如圖,連接CE,
∵AD是圓的切線,
∴β=∠CFE,
∵∠BFE+∠CFE=180°
∴α+β=2×90°=180°.
點(diǎn)評:遇到切線作出過切點(diǎn)的半徑是解好本題的突破口,切線的性質(zhì)是本題考查的重點(diǎn).熟練掌握勾股定理和矩形的性質(zhì)對解答本題也很重要.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、已知,如圖,矩形ABCD中,AC與BD相交于點(diǎn)O,BE⊥AC于E,CF⊥BD于F.
求證:BE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•武漢)如圖,矩形ABCD中,點(diǎn)E在邊AB上,將矩形ABCD沿直線DE折疊,點(diǎn)A恰好落在邊BC的點(diǎn)F處.若AE=5,BF=3,則CD的長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黃岡)如圖,矩形ABCD中,AB=4,BC=3,邊CD在直線l上,將矩形ABCD沿直線l作無滑動翻滾,當(dāng)點(diǎn)A第一次翻滾到點(diǎn)A1位置時,則點(diǎn)A經(jīng)過的路線長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點(diǎn)P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動,設(shè)運(yùn)動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)若△PBQ的面積為18cm2,求運(yùn)動時間;
(3)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD的邊AB、BC的長分別為4
3
cm和2
6
cm,E、F、G、H分別是矩形各邊的中點(diǎn),求四邊形EFGH的周長和面積.

查看答案和解析>>

同步練習(xí)冊答案